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Abstract
Social media data are widely used to infer health related in-
formation (e.g., the number of individuals with symptoms).
A typical approach is to use a machine learning classification
to aggregate and count the information of interest. However,
this approach fails to account for errors made by the clas-
sifier. This paper summarizes data mining concepts that ac-
count for classifier error when counting data instances, and
then extends these ideas to propose a new algorithm for con-
structing confidence intervals of social media estimates that
we show to be substantially more accurate than standard ap-
proaches on two influenza-related Twitter datasets.

Introduction
Social media posts have been used to infer trends related
to a wide variety of health applications. A common ap-
proach to extract signals from social media is to first filter the
data for relevant content, usually involving a combination of
simple search queries and machine learning classification,
and then aggregating the content by counting the number
of relevant posts within specified groups (e.g., counts by
week or by location) (Paul and Dredze 2017). This approach
has been applied to influenza surveillance (Culotta 2010;
Doan, Ohno-Machado, and Collier 2012), measuring vac-
cination attitudes (Mitra, Counts, and Pennebaker 2016) and
behavior (Huang et al. 2017), and monitoring public health
concerns (Ji, Chun, and Geller 2013).

A flaw in this approach is that the aggregated counts typ-
ically do not account for biases and errors introduced by the
relevance filtering and classification step. While studies will
typically report evaluation metrics of the accuracy of this
step, once the accuracy is deemed “good enough”, down-
stream statistical analysis is applied to the classified data
and relevance classifications are treated as correct. Since al-
most all methods of filtering and classification will introduce
some degree of error, we seek to better understand the effect
this error has on downstream aggregation.

In the data mining community, the task of aggregating
individually-classified instances is known as quantification,
and various methods have been proposed to adjust for clas-
sification error to produce more accurate counts (Forman
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2008). However, most social media studies do not draw on
methods from the quantification literature when conducting
statistical analyses of aggregated data, and to the best of our
knowledge, these methods have not been applied to social
media studies in the health domain.

The purpose of this short paper is to introduce concepts
of quantification from the data mining community to the so-
cial media monitoring community; additionally, we present
a new algorithm for constructing confidence intervals of so-
cial media estimates that we show to be more accurate than
standard quantification approaches, as existing quantifica-
tion techniques have been focused on point estimates rather
than confidence intervals. We validate this approach empiri-
cally on two influenza-related Twitter datasets used for pub-
lic health monitoring.

Background: Quantification
The quantification problem was first described in seminal
work by Forman (2005; 2008), who showed that classifi-
cation errors introduce systematic bias into the calculation
of the number of positives. He used the term “classify and
count” to describe the naı̈ve quantification approach of sim-
ply counting the number of positively classified instances,
and proposed several methods for adjusting the counts based
on the true and false positive rates of the classifier, with
some methods motivated specifically for data with imbal-
anced classes (Forman 2008).

This line of work has been extended to consider the ef-
fect of concept drift on quantification (Xue and Weiss 2009;
Pérez-Gállego, Quevedo, and del Coz 2017), to count ordi-
nal values (Da San Martino, Gao, and Sebastiani 2016), and
to incorporate classifier probabilities into quantification es-
timates (Bella et al. 2010). See González et al. (2017) for a
review of quantification methods.

In practice, quantification is an increasingly widespread
application of social media posts. All of the health stud-
ies cited above in the introduction used the “classify and
count” method of quantification (Forman 2008), though they
did not refer to it as such; indeed, most work on aggregat-
ing social media content does not reference related work on
quantification, even though quantification is implicitly being
performed. After reviewing all papers on Google Scholar
that cited the quantification papers above, we were able to
find only a small number of studies that used adjustments



when quantifying social media posts, all for the applica-
tion of sentiment analysis (Gao and Sebastiani 2015; 2016;
Nakov et al. 2016; Sebastiani 2018). As far as we were able
to discover, no work on social media-based health monitor-
ing has applied adjustments when aggregating data.

Confidence Intervals
All previously proposed quantification methods have fo-
cused on producing point estimates of counts. We argue that
for many quantification tasks it is useful to provide confi-
dence intervals around the estimate; indeed, many of the so-
cial media studies we cited in the introduction constructed
confidence intervals or similar statistics, but did not adjust
for classification error. The main contribution of this work
is to present an adjusted method for constructing bootstrap-
based confidence intervals to correctly account for classi-
fication error, described in the next section. In our experi-
ments, we show that naı̈vely-constructed confidence inter-
vals are highly inaccurate, and our proposed algorithm is
much more accurate than simply constructing confidence in-
tervals using statistics adjusted with Forman’s methods.

Adjusted Confidence Intervals
In this section, we present a non-parametric approach to con-
structing a confidence interval for the percent of instances
within a group (e.g., the percent of tweets within a week)
that are labeled positive. We denote this estimate as p̂.

We first review bootstrapping for constructing confidence
intervals, then propose a modification that incorporates clas-
sifier error into the sampling procedure.

Bootstrapping
Bootstrapping, or bootstrap resampling, is a procedure to
simulate the statistics one would obtain when sampling from
a distribution (Efron and Tibshirani 1993). A bootstrapped
estimate is obtained by sampling N instances with replace-
ment from the original dataset of size N , then calculating
the statistic (e.g., p̂) on the set of sampled instances. This
procedure can be repeated many times to obtain many boot-
strapped estimates, providing a distribution over estimates.
To construct a c% confidence interval, the bootstrapped es-
timates can be sorted, and the range of the middle c% of
values can be taken as the interval.

Error-adjusted Bootstrapping
If bootstrapping is applied to noisy classifications rather than
true labels, then the samples will not be drawn from the cor-
rect distribution. We propose an adjustment to the sampling
procedure that draws from the actual distribution of the data.

For each bootstrap sample, after selecting the instances
(sampled with replacement), we randomly sample the labels
of the instances two ways. The first is according to the con-
fusion matrix of the classifier. If an instance is classified pos-
itive, we sample the label according to P (Yi|Ŷi = 1), where
Yi is the true label of instance i and Ŷi is the classifier es-
timate. If an instance is classified negative, we sample the
label according to P (Yi|Ŷi = 0). In this way, rather than

Algorithm 1: Error-adjusted bootstrap resampling

Data: Set of N instances classified as Ŷi ∈ {0, 1}
Input: Number of bootstrap samples, T
Output: S, a set of T estimates of p̂
S = {}
for 1 ≤ t ≤ T do

y = []
for 1 ≤ i ≤ N do

Sample instance j ∈ {1, 2, . . . , N};
if Ŷj = 1 then

Sample y ∼ P (Yj = y|Ŷj = 1);
else

Sample y ∼ P (Yj = y|Ŷj = 0);
end
y += [y];

end
p̂ = 1

N

∑N
i=1 yi;

S = S ∪ {p̂};
end
return S

treating the classifications as labels directly, we sample la-
bels based on the probability that the classifier predicted an
incorrect label. This procedure simulates the classification
process in addition to the sampling process when obtaining
an estimate.

We refer to this approach as error-adjusted bootstrapping.
The steps to obtain a set of error-adjusted bootstrapped sam-
ples are detailed in Algorithm 1.

Correctness of Algorithm The underlying assumption of
bootstrap resampling is that the instances are i.i.d. and that
uniformly sampling an instance is a draw from P (Y ). If the
distribution of classifications P (Ŷ ) is different from the dis-
tribution of labels P (Y ), then randomly sampling from the
classifier outputs will not correctly draw from P (Y ).

Our approach uses the distribution P (Ŷ ) and predictive
values P (Y |Ŷ ) to correctly calculate P (Y ): P (Yi = y) =

P (Yi=y|Ŷi=0)P (Ŷi=0) + P (Yi=y|Ŷi=1)P (Ŷi=1).
As a generative process, sampling from this marginal dis-

tribution corresponds to the following steps for each instance
i: (i) Sample ŷi ∼ P (Ŷ ); (ii) Sample yi ∼ P (Y |Ŷi = ŷi).
This matches Algorithm 1, which thus samples a label y ac-
cording to to the true label distribution P (Y ) rather than the
classification distribution P (Ŷ ).

Predictive Value Estimation As described so far, we as-
sume the positive predictive value, P (Y |Ŷ = 1), and nega-
tive predictive value, P (Y |Ŷ = 0), are known. We propose
two approaches to estimating these values. The first uses
cross-validation to provide point estimates of the positive
and negative predictive values at each threshold of interest.
This is the same approach used in prior work (Forman 2008).

The second approach extends Algorithm 1 to use a poste-
rior distribution over predictive values. We do this by fitting
a beta distribution to the individual estimates from cross-



validation. We then draw a new estimate of the predictive
values before sampling each label yj during bootstrapping.
We refer to this in experiments as the extended algorithm.
Importantly, data used for these methods may be subject to
other types of bias, including concept drift. If error rates
change, predictive values would need to be re-estimated with
new data (Pérez-Gállego, Quevedo, and del Coz 2017).

Experiments
We now experiment with estimating the percent of positive
tweets in two datasets, comparing four different methods of
constructing bootstrap-based confidence intervals.

Datasets and Classification Details
We experimented with binary classification on two datasets:

• Flu Vaccination: A set of 10,000 tweets labeled with if
the tweet indicates that someone has received an influenza
vaccination (i.e., a seasonal flu shot) (Huang et al. 2017)
from 2013-2016. The aggregation task is to calculate the
percent of tweets that indicate vaccination each month.

• Flu Infection: A set of 1,017 tweets from (Lamb, Paul,
and Dredze 2013) from 2009 labeled as indicating flu in-
fection. The original dataset included 5,000 tweets, but
most are no longer available for download. The aggrega-
tion task is to calculate the percent of tweets indicating flu
infection each week of available data.

Classification was done using binary logistic regres-
sion classifiers with unigram features implemented with
scikit-learn (Pedregosa and others, 2011). For the
larger Flu Vaccination data, we held out 15% of tweets for
testing. Because the Flu Infection data were quite small,
25% of tweets were held out for testing. Grid search using
five-fold cross validation on the training data was used to
tune the `2 regularization parameter.

We experiment with different classification thresholds,
meaning we set ŷi = 1 if P (yi = 1|xi) > τ for a threshold
τ . Increasing the threshold will generally increase precision
while reducing recall.

Baseline We experimentally compare to the “adjusted
counts” method from Forman (2008). Here, the true posi-
tive rate (α) and the false positive rate (β) are used to obtain
an adjusted estimate of the percent of positive instances:

p ≈ p̂− β
α− β

, (1)

where p̂ is the fraction estimated positive by the classifier.
The estimate must be truncated to the range [0, 1]. In our
experiments we calculate the adjusted counts within each
bootstrapping iteration, and then construct confidence inter-
vals of the adjusted counts.

Results
We examine the empirical characteristics of 95% confidence
intervals constructed using bootstrap sampling, with and
without making various error adjustments. We look at two
characteristics: the fraction of times that the true value is

contained in the interval (which should be 95%, asymptoti-
cally), as well as the size of the intervals.

Figure 1 shows these characteristics. The blue lines show
the fraction of correct values contained in the 95% confi-
dence intervals. As expected, the confidence intervals con-
structed using error-adjusted bootstrapping correctly capture
the true values around 95% of the time, though it is less con-
sistent on the smaller Flu Infection where the fraction some-
times drops to around 90%. This fraction is often higher than
95% with the extended version of Algorithm 1, suggesting
that this method may unnecessarily overcompensate for un-
certainty in the predictive values, but this method provides a
benefit on the smaller Flu Infection set.

Importantly, we see that traditional bootstrapping without
adjusting for classification error can severely affect the reli-
ability of the confidence intervals. On Flu Vaccination, the
unadjusted 95% confidence interval is correct less than 90%
of the time at best and is as low as 65% at suboptimal thresh-
olds. The Forman adjusted count method is more accurate
than doing no adjustment, but is still inaccurate, with values
between 80% and 90%. The situation is even worse on Flu
Infection, where the unadjusted fraction is only 77% at best
and as low as 45%. Similarly, the Forman baseline is more
accurate than doing no adjustment, but less accurate than the
Algorithm 1-adjusted methods, with a fraction around 80%
at best.

Finally, the orange lines show the size of the intervals, to
quantify how much wider the intervals must be to correctly
adjust for error. In the Flu Vaccination dataset, the width of
the confidence intervals in the Algorithm 1-adjusted meth-
ods consistently increase as the threshold increases even
while the confidence intervals are consistently capturing the
true values 95% of the time, suggesting that more statistical
power can be obtained with a lower classification threshold
(i.e., tuned for high recall). Due to the small size of the Flu
Infection dataset, there is greater variation between the dif-
ferent methods, without clear conclusions.

Use Case: Vaccination Surveillance
Finally, we consider how this type of analysis relates to a
real application of using the proportion of vaccine-related
tweets to measure vaccination rates in a population. To do
this, we applied the classifier trained on the Twitter dataset to
a larger set of approximately 1 million tweets, from Huang
et al. (2017). At different classification thresholds, we esti-
mate the proportion of positive tweets in each month, and
we compare these proportions to official flu vaccination data
from the US Centers for Disease Control and Prevention
(CDC), to evaluate how well monthly variations in vaccine
tweets track true vaccination behavior (Huang et al. 2017).
We measure this with Pearson correlation, calculating the
proportions using adjusted bootstrapping from Algorithm 1
versus no adjustment.

Figure 2 shows the correlations between Twitter propor-
tions and CDC data. While error-adjusted bootstrapping is
more accurate at capturing confidence intervals (Figure 1),
we do not see comparably large gains in correlations in this
task. However, error-adjusted bootstrapping seems to pro-
vide a small benefit at some classification thresholds.
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Figure 1: The size of 95% confidence intervals (orange) and fraction of true values contained within 95% confidence intervals
(blue) at different classification thresholds, when constructing intervals with and without adjusting for error. With error-adjusted
bootstrapping, the true value should theoretically be contained in the interval 95% of the time.
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Figure 2: Correlations between Twitter classifier output and
official vaccination data (higher is better).

Discussion and Conclusion
Confidence intervals constructed without accounting for
classification error could be surprisingly inaccurate in our
experiments (e.g., a 95% interval behaves like a 45% in-
terval), highlighting the need to be careful about analyzing
classifier outputs. We showed that a simple-to-implement
adjustment to bootstrap sampling can correct for this, and
we recommend this approach when aggregating social me-
dia posts or other filtered data.
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