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Abstract

We evaluate the performance of Twitter-based influenza
surveillance in ten English-speaking countries across
four continents. We find that tweets are positively cor-
related with existing surveillance data provided by gov-
ernment agencies in these countries, with r values rang-
ing from .37–.81. We show that incorporating Twitter
data into a strong autoregressive baseline reduces mean
squared error in 80 to 100 percent of locations depend-
ing on the lag, with larger improvements when reporting
delays are longer.

Introduction
Web-based data streams, including search engine statistics
and social media messages, have emerged as complemen-
tary sources of data for influenza surveillance. Tweets – sta-
tus updates from the microblog Twitter – are a particularly
promising data source due to the large volume and open-
ness of the platform (Broniatowski, Paul, and Dredze 2014).
Tweets can often be resolved to geographic locations (Ous-
salah et al. 2012), either through GPS coordinates (e.g. when
used with mobile devices), self-reported locations in user
profiles (Hecht et al. 2011), or content based geolocation
(Wing and Baldridge 2011; Han, Cook, and Baldwin 2014).
This property makes Twitter suitable for surveillance across
multiple geographic locations.

Most research evaluating Twitter for influenza surveil-
lance has focused on the United States – at the national (Cu-
lotta 2010; Chew and Eysenbach 2010; Signorini, Segre, and
Polgreen 2011; Doan, Ohno-Machado, and Collier 2012)
and local levels (Broniatowski, Paul, and Dredze 2013;
Nagar et al. 2014). Other countries have been explored to
a lesser extent, including the United Kingdom (Lampos and
Cristianini 2012; Dredze et al. 2013), Japan (Eiji Aramaki
and Morita 2011), Portugal (Santos and Matos 2014), and
China (through microblog Sina Weibo) (Sun, Ye, and Ren
2014). All of these Twitter systems have been evaluated on
just one or a small number of locations.

In this study, we evaluate the utility of Twitter data for
surveillance in several countries around the globe. We use
the influenza detection system of Lamb, Paul, and Dredze
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(2013), which has been shown to have state of the art perfor-
mance at Twitter-based flu tracking in the US (Broniatowski,
Paul, and Dredze 2013). Our new experiments show that this
system is moderately to highly correlated with government-
provided surveillance data in ten countries. We show that
Twitter provides utility in influenza prediction compared to
a strong autoregressive baseline.

Data
Twitter Influenza Surveillance
We use our Twitter influenza surveillance system described
in Lamb, Paul, and Dredze (2013), and Broniatowski, Paul,
and Dredze (2013). The detection algorithm categorizes in-
dividual tweets for relevance to influenza infection and then
produces estimates by aggregating the relevant tweets over
some time interval (e.g. weekly).

Tweets are categorized according to a cascade of three lo-
gistic regression models that classify tweets based on dif-
ferent granularities of relevance: whether a tweet is rele-
vant to health, whether a health tweet is about influenza, and
whether an influenza tweet indicates an infection as opposed
to a general awareness of the flu. The first model is trained
on 5,128 hand-labeled English-language tweets, while the
two influenza models are trained on 11,990 tweets.1 The
classifiers use a variety of features, including n-grams, in-
dicators of URLs and @-mentions, and a variety of shallow
syntactic features created using part-of-speech tag templates
(Gimpel et al. 2011).

Our Twitter dataset contains approximately 4 million pub-
lic tweets per day starting November 27, 2011. More details
of our Twitter data collection are described in Broniatowski
et al. (2013). We create weekly estimates of influenza preva-
lence as the number of influenza infection tweets classified
by our models, normalized by the total number of public
tweets in the week (the influenza rate – the infection preva-
lence per tweet). The denominator adjusts the Twitter rate to
account for changes in overall tweet volume over time.

Estimates for particular locations are produced by restrict-
ing the numerator and denominator only to tweets posted

1Because the models were trained on tweet data, rather than
relying on pre-specified keywords, we can in principle handle mis-
matches in medical terminology between professionals and indi-
vidual web users (Nie et al. 2014a; 2014b).
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Figure 1: The influenza rate over time as measured by official government surveillance data and our Twitter surveillance
estimates for three northern hemisphere countries (top) and three southern hemisphere countries (bottom).

from the specified location. Tweets are resolved to specific
locations using the Carmen geolocation system (Dredze et
al. 2013), which is estimated to resolve countries with 91%
accuracy.

The data were downloaded from HealthTweets.org
(Dredze et al. 2014), a public website that provides weekly
estimates produced by our system.2

Sentinel Influenza Surveillance
We collected and compared to sentinel surveillance data
publicly available from various government agencies. Our
dataset includes national estimates of influenza-like illness
(ILI) for ten countries: Australia, Canada, Ireland, New
Zealand, South Africa, the United Kingdom (England and
Wales, Wales alone, Scotland, Northern Ireland), and the
United States (US).

We selected these countries because their populations are
primarily English-speaking and there was available weekly
or biweekly government data for influenza during the flu
season.

The weekly data span three influenza seasons, beginning
week 47 of 2011 (when our Twitter dataset begins) through
week 18 of 2014, when the data were collected.3 We have
less data for some locations. New Zealand begins later and
is particularly sparse because the agency does not release
reports in off-season weeks. Other locations have missing

2The website requires an account, which can be freely requested
using the form linked from the homepage.

3We have more recent data for some locations, but we restricted
the time range to be consistent across all locations, so that the re-
sults are comparable.

data as well, either because of limited reporting off season,
or anomalous gaps due to various circumstances. Our table
of results therefore provides both the range of weeks as well
as well as the number of data points that are included.

Different agencies release reports with varying delays,
which we characterize in terms of a range of days. For ex-
ample, in the US the Centers for Disease Control and Pre-
vention (CDC) releases weekly reports every Friday for the
previous week. Since the reporting weeks end on Saturday,
we classify the delay as 6–13 days. The delay is thus 1–2
weeks. Most researchers have used the upper end and as-
sumed a 2-week lag in their models (Ginsberg et al. 2008;
Goel et al. 2010; Lazer et al. 2014), but both are realistic.
Some agencies release reports with less frequency (e.g. bi-
weekly), so the range of days is wider.

Overall, it is clear that this data set is an imperfect mea-
sure of influenza and of variable quality. Nevertheless, it is
an accurate reflection of the current state of practice at a
wide variety of health agencies. Improvements enabled by
our Twitter system to these methods mean real improve-
ments in surveillance for health officials and clinicians.

Full details of these data are provided in Table 3 at the end
of this paper.

Model Evaluation
Following previous work (Culotta 2010; Broniatowski, Paul,
and Dredze 2013), we report the Pearson correlation be-
tween the Twitter estimates and the values provided by gov-
ernment agencies.

Additionally, we recently noted (Paul, Dredze, and Broni-
atowski 2014b; 2014a) that simple autoregressive models –
regression models that predict the current week value based



Location Pop. # Tweets / week Delay n Time Range r MSE Red. (%)
All Flu `=1 `=2 `=3

Australia 22.7m 60,332 304 12–26 125 201149 – 201418 0.648* 10.5 19.5* 29.2*
Canada 34.9m 137,608 544 6–20 125 201149 – 201418 0.740* 7.7 24.1* 37.2*

England+Wales 56.1m 339,387 1,935 4–11 122 201149 – 201418 0.517* -0.6 7.8 9.5
Ireland 4.6m 30,180 211 4–11 113 201149 – 201418 0.433* 1.6 5.4 7.4

New Zealand 4.4m 9,003 46 3–10 45 201220 – 201344 0.614* 18.0 37.0 59.2
Northern Ireland 1.8m 6,415 46 4–11 122 201149 – 201418 0.422* 5.3 6.1 8.7

Scotland 5.3m 32,212 184 4–11 122 201149 – 201418 0.517* -3.2 -0.5 4.2
South Africa 51.2m 33,095 495 >30 105 201203 – 201418 0.547* 5.6 17.2 25.3
United States 314.0m 2.1m 5,846 6–13 125 201149 – 201418 0.814* 15.3 17.7 33.6*

Wales 3.1m 14,169 96 4–11 122 201149 – 201418 0.374* 2.7 6.8 3.3

Table 1: For each location, the table shows the Pearson correlation coefficient (r) between the surveillance data and the Twitter
rates, as well as the relative reduction in mean squared error (MSE Red.) when incorporating Twitter data into the nowcasting
model with lags (`) of 1–3 weeks. Additionally, the table includes details about the locations, including the population (Pop.)
and average weekly tweet volume (all tweets and flu tweets), the reporting delay (Delay) for that location, measured as a range
of days, and the time span (given by year and week number) and number of data points (n) included.
∗ indicates significance with p < 0.05. Significance of error reduction is measured with a paired t-test of weekly error values.
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Figure 2: Each country’s Pearson correlation (r) value as reported in Table 1 (y-axis) along with the population (left) or tweet
volume (right) for each country (x-axis; log scale).

on previous weeks – are very strong baseline models, and in
fact are better at nowcasting the current influenza rate better
than Twitter alone. Even if the Twitter data is highly cor-
related, it does not necessarily add predictive power beyond
the original time series. For this reason, we will compare to a
baseline linear autoregressive model that estimates the value
yw of the current week w given the previous two weeks of
available data:

ŷw = α0yw−` + α1yw−`−1 (1)

The variable ` denotes the lag in reporting, e.g. ` = 1
if the surveillance data is released one week later. We will
investigate performance with lags of 1–3 weeks. The α co-
efficients are estimated via standard least squares regression.
This model can be used to “nowcast” the current week’s
value given the previous data (Lampos and Cristianini 2012;
Achrekar et al. 2012).

We then experiment with a similar model that includes the
Twitter estimate zw for week w as a predictor:

ŷw = γzw + α0yw−` + α1yw−`−1 (2)

The parameters were estimated using Scikit-learn (Pe-
dregosa et al. 2011). We used Ridge Regression with a tiny
penalty on the `2 norm (10−6) simply to stabilize the param-
eter values. Weeks with missing data were excluded from
our analysis.

We will compare the predictive performance of these two
nowcasting models using five-fold cross validation across
the entire span of time. We segment the data into five con-
tiguous sets, train the models on 80% of the data at a time,
and evaluate on the remaining 20%, repeated across all folds.
This experiment is repeated for each country. By evaluating
on out-of-sample data, cross-validation provides better esti-
mates of how the models will perform in the future, com-
pared to measures only on in-sample data.

Results
Table 1 gives our key results, including the correlation be-
tween the Twitter rates and surveillance data, and the reduc-
tion in mean squared error (MSE) when incorporating Twit-
ter into the nowcasting model.

The Twitter data is moderately to highly correlated with



the surveillance data: a significant positive correlation exists
for every location. The Twitter data reduces nowcasting er-
ror in nearly all cases: 8 out of 10 locations with `=1, 9 out
of 10 with `=2, and all 10 with `=3.

In addition to the reduction in MSE, we show the origi-
nal MSE values (for both the baseline model and the model
with Twitter) in Table 2. In addition to the raw MSE, we
show a version of MSE that has been normalized by the data
variance, so that these values can be compared across lo-
cations. Finally, we also measured mean relative error, fol-
lowing Lazer et al. (2014), shown in the rightmost columns
of Table 2. The results are very different when measured
with relative error rather than with MSE. Under this metric,
Twitter reduces error in only 20% of locations. The United
States has the largest (and only significant) reduction in rel-
ative error. This is also the location studied by Lazer et al.,
analyzing Google Flu Trends.

We investigated the relationship between the correlation
value r in the table and the population or tweet volume of
each country. Figure 2 shows that there is a log-linear rela-
tionship between the performance and the country popula-
tion (a correlation of .764 between the r values and the log
of the population) and similarly with overall tweet volume
(correlation of .701). It thus seems that Twitter surveillance
generally works better in locations with larger populations
and higher Twitter activity, though there are exceptions. For
instance, Twitter correlates surprisingly poorly with Eng-
land+Wales for having the second-highest population and
tweet volume, with r on the lower end of our results, at .517.

Discussion
Our results show that Twitter influenza data is well corre-
lated with data from ten English-speaking countries across
four continents.

That tweets are well correlated is important independent
of the nowcasting performance. The nowcasting models pro-
vide a benchmark to demonstrate the marginal utility of
adding Twitter to existing data, yet these models cannot al-
ways be used in practice, and therefore this baseline is per-
haps unrealistically strong for many scenarios. For exam-
ple, these models are not robust to gaps, and cannot be used
during off-season weeks in locations that do not report dur-
ing those periods. Our results ignore weeks that are missing
from the surveillance data, yet in practice tweets could be
useful when these data are missing.

The nowcasting experiments are also unrealistic because
they assume that the data used for nowcasting were available
at the time the prediction is made. In fact, the numbers that
are initially published by agencies are often revised in the fu-
ture, e.g. as additional providers in the network will submit
reports. The effect of revisions is not trivial. Our recent ret-
rospective study of US data (Paul, Dredze, and Broniatowski
2014b; 2014a) showed that nowcasting models which used
the revised values (not available at the time of the nowcast)
underestimated the error by 42% over using the values that
were initially reported. Moreover, including Twitter data re-
duced nowcasting error by 30% when using the initial val-
ues, but only by 6% when inaccurately using the revised val-
ues. Thus, by not taking revisions into account, it is possible

that we are substantially underestimating the marginal util-
ity of including Twitter, so our results should be viewed as a
lower bound on the true improvement. If we were to see the
same effect of revisions in other countries, then we would
expect the error to be decreased by a factor of 5.

We note that Twitter reduces mean squared error, but often
worsens relative error. This means that Twitter reduces error
more during weeks with large values than weeks with small
values. It is not clear why this discrepancy exists, but this
suggests that Twitter is most useful during weeks when it is
most needed: during in-season and near-peak weeks where
the rate is high. Our error metrics do not distinguish between
in-season and off-season periods, but a finer-grained anal-
ysis is worth considering in future work, in light of these
findings.

Distinguishing in-season and off-season weeks may also
provide a more reflective estimate of a system’s perfor-
mance, because the performance is arguably less important
off-season, depending on its application. More generally,
mean error across all weeks is not necessarily the best met-
ric for a surveillance system, although we use it here because
it is a standard and interpretable metric. A recent CDC con-
test, for example, evaluated influenza forecasting systems by
their ability to predict specific milestones, such as the peak
and duration of a season (CDC 2013). Ultimately, the most
appropriate metric for evaluation depends on the needs of
practitioners.

Conclusion
We have presented, to the best of our knowledge, the most
geographically comprehensive study to date evaluating the
performance of Twitter-based influenza surveillance. We
compared our Twitter estimates to ground truth data from
ten countries, and found the Twitter data to be significantly
correlated with all ten datasets. Additionally, we showed that
Twitter data offers marginal utility over a standard autore-
gressive baseline, with increasing improvements with larger
reporting lags. We analyzed the relationship between the
system performance and characteristics of each location and
found that Twitter surveillance tends to work better for more
populous countries with higher Twitter activity.
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Location Source, URL, and Description
Australia Department of Health

http://www.health.gov.au/internet/main/publishing.nsf/Content/cda-surveil-ozflu-flucurr.htm

ILI Sentinel taken from the Australian Influenza Surveillance Report figure 6: “Weekly rate of ILI reported from
GP ILI surveillance systems” with the unit described as “Rate per 1,000 consultations”. Weeks begin Monday.

Canada Public Health Agency of Canada
http://www.phac-aspc.gc.ca/fluwatch/13-14/index-eng.php

ILI Sentinel taken from FluWatch Report figure 5: “Influenza-like-illness (ILI) consultation rates by report
week” with the unit described as “Rate per 1,000 patient visits”. Weeks begin Sunday.

Ireland Health Protection Surveillance Centre
http://www.hpsc.ie/A-Z/Respiratory/Influenza/SeasonalInfluenza/Surveillance/InfluenzaSurveillanceReports/

ILI Sentinel taken from Influenza Surveillance Report figure 1: “ILI sentinel GP consultation rates per 10,000
population” with the unit described as “ILI rate per 100,000 population”. Weeks begin Monday.

New Zealand Institute of Environmental Science and Research
https://surv.esr.cri.nz/virology/influenza weekly update.php

ILI Sentinel taken from Influenza Weekly Update figure 2: “Weekly consultation rates for influenza-like illness
in New Zealand, 2010-2014” with the unit described as “Consultation rate (per 100,000)”. The Influenza Weekly
Update only reports during the influenza season in New Zealand which typically lasts between weeks 18 to 44.
Weeks begin Monday.

South Africa National Institute of Communicable Diseases
http://www.nicd.ac.za/?page=surveillance bulletin&id=15

Hospital consultation data taken from National Institute of Communicable Diseases Monthly Surveillance Bul-
letin. The unit measured is the number of private hospital outpatient consultations with a discharge diagnosis of
pneumonia and influenza. Weeks begin Sunday.

United Kingdom Public Health England
http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/SeasonalInfluenza/EpidemiologicalData/

ILI Sentinel taken from the National Influenza Report in the tables from the “Weekly consultation rates in
national sentinel schemes” section. Weeks begin Monday.

United States Centers for Disease Control and Prevention
http://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

ILI Sentinal data from the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). The CDC
coordinates the network and publishes weekly reports showing the percentage of outpatient consultations for
ILI. National rates as well as rates for the 10 HHS regions are available. Weeks begin Sunday.

Table 3: Information about the surveillance data sources. For each country, we note the agency who provided the data, the URL
from which the data were downloaded, and additional comments about the metrics and data availability. We also note which
day of the week is the starting day for weekly counts.


