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ABSTRACT
Public health thrives on high quality evidence, yet acquiring meaningful data on a popula-

tion remains a central challenge of public health research and practice. Social monitoring,

the analysis of social media and other user-generated web data, has brought advances in the

way we leverage population data to understand health. Social media offers advantages over

traditional data sources, including real-time data availability, ease of access, and reduced

cost. Social media allows us to ask, and answer, questions we never thought possible.

This book presents an overview of the progress on uses of social monitoring to study

public health over the past decade. We explain available data sources, common methods,

and survey research on social monitoring in a wide range of public health areas. Our exam-

ples come from topics such as disease surveillance, behavioral medicine, and mental health,

among others. We explore the limitations and concerns of these methods. Our survey of

this exciting new field of data-driven research lays out future research directions.
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Preface

In October of 2010, Michael was a new computer science PhD student at Johns Hopkins,

Mark was his research adviser, and we were both attending the conference on Empirical

Methods in Natural Language Processing (EMNLP). Sitting in a Boston restaurant one

night of the conference, we started talking about this new website called “Twitter” and

what interesting research we could do with millions of tweets. One of us wondered if anyone

talked about health on the new social media platform. At the end of the conference, Mark

sent an email to Michael:

I did a quick search out of curiosity. I looked at half of 1% of our twitter collec-

tion. . . to pull out all tweets that have the word “sick”. . . You can see that there

are lots of tweets where the author [writes] sick, but of course it’s not such a

simple problem.

That email led to Michael’s class project, which led to our first paper together at the

International Conference on Weblogs and Social Media (ICWSM) [Paul and Dredze, 2011].

That paper contained many of the ideas we’d follow in subsequent years: structured topic

models, topic analyses for social media, influenza surveillance, drug and tobacco use, health

behaviors, mental health, and geo-locating tweets. Since then, it’s been a whirlwind of

research, and we’ve each developed a deeper interest in public health.

In some sense, the field of social monitoring for public health has followed a similar

path. Initial work on using Google and Twitter for influenza surveillance progressed to

surveillance for other infectious diseases, and quickly branched out to a wide range of

public health topics. Before we knew it, an entire field of research had grown around us.

As we read newly published papers in this area, we were amazed by the creativity

and breadth of what was being achieved. We collected our observations and began to notice

common themes and structures across research areas, structures that could organize the

field and allow it to move forward. It made sense to write down what we observed, and

before we realized it, we had a book.

This book is a reflection of the past decade of research, a summary of how we reached

this point and what has been done so far in this fast-paced field. We can’t predict the

future, but by understanding what we have achieved so far, we hope to provide researchers

with a foundation on which to build the future of this field.

Michael J. Paul and Mark Dredze

July 2017
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C H A P T E R 1

A New Source of Big Data

We can only see a short distance ahead,
but we can see plenty there that needs
to be done.

Alan Turing

Protecting Health, Saving Lives –
Millions at a Time

Mission of the Johns Hopkins Bloomberg
School of Public Health

You’ve likely seen a public health awareness campaign. Perhaps you’ve seen an ad-

vertisement from New York Health (the Department of Health and Mental Hygiene) on

the subway warning about the dangers of synthetic drugs. Maybe you’ve seen a billboard

in Baltimore warning that children with influenza should stay home from school. You may

have seen a social media advertisement from Los Angeles’s “Break Up With Tobacco”

campaign.

These are just some of the advertisements you may come across as part of public

health awareness campaigns. These programs promote breast cancer screenings, testing for

HIV, counseling for depression. Public health awareness campaigns are organized efforts

to promote awareness of a health issue through the use of advertising, news and social

media. There are hundreds of public health awareness campaigns organized every year,

from well-known topics like “World Immunization Week,” “World AIDS Day” or “The

Great American Smokeout,” to lesser known ones like “Global Handwashing Day” or the

“National Bone Health Campaign.” All share the same goal: increase awareness in the hopes

of combating a public health problem. A simple question: do these campaigns work?

For the moment, let’s consider another topic: vaccines. One of the great public health

victories of the last century has been the development and dissemination of a wide range

of vaccines. Thanks to vaccines, we’ve saved 5 million lives a year by eliminating smallpox.

We’ve essentially eliminated many other diseases in the developed world, including diph-

theria, whooping cough, measles and polio. In the United States, with the introduction of

the first measles vaccine in 1962, the number of measles cases went from roughly half a

million a year to only a handful by the end of the 20th century [Orenstein et al., 2004].
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2 1. A NEW SOURCE OF BIG DATA

Yet this great public health victory is slowly being eroded with an uptick in cases over

the past 5 years, including 667 measles infections in 2014.1 The return of the measles can

be attributed to the growing vaccine refusal movement, which advocates against childhood

vaccination, including the MMR vaccine (measles, mumps, and rubella). While many of us

have heard the arguments of this movement against vaccines, why are they so effective with

a small but significant fraction of parents? What reasons for skipping childhood vaccines

are most convincing to different types of parents? How can physicians best address the

concerns of parents?

One final topic. One of the leading causes of death in the United States is suicide.

It’s a staggering figure, but over 40,000 Americans die by suicide each year.2 While our

understanding of mental health disorders and factors that influence suicide has advanced

tremendously, we remain especially poor at predicting who will follow through on a suicide

attempt. We have been unable to identify unique predictors of suicide [Murphy, 1984].

Instead, we can identify a large at-risk population, a small percentage of which will actually

attempt. Treating this group is generally effective for suicide prevention, but too many cases

are missed since we cannot further focus our efforts. With such a large number of deaths

each year, it is natural to ask: are there other unknown predictors of suicide we are missing?

These are just a few of the numerous questions for which we need better answers.

Given the importance of these public health topics, issues that effect millions of lives, why

don’t we have an answer? Why can’t we do the research necessary to provide actionable

information?

Like all scientific pursuits, our ability to answer health questions depends on our

access to relevant data. Without evidence from data, we can’t provide meaningful answers.

What about “big data” research, the popular buzzword that encompasses all manner of new

research efforts from physics to psychology, from linguistics to literature? Where might we

find big data for public health?

A patient visits a doctor, and the interaction is documented in a clinical record. This

interaction happens over a billion times in the United States each year.3 Surely this is

enough to qualify as big data! These clinical records taken together have the potential to

answer many important questions in medicine. Among the many goals of the Affordable

Care Act passed by the United States Congress in 2010 was to digitize these records by

incentivizing physicians to switch to electronic health records (EHRs). While the primary

goal of the initiative was to reduce costs, an additional goal was to create a vast digital

resource for health research [Adler-Milstein et al., 2014]. In large part, this has worked—

the number of physician offices using EHRs has grown from around 50% in 2010 [Hsiao

et al., 2012] to nearly 87% in 2015.4 Millions of digital records for patients throughout the

1http://www.cdc.gov/mmwr/publications/index.html
2http://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
3http://www.cdc.gov/nchs/fastats/physician-visits.htm
4http://www.cdc.gov/nchs/fastats/electronic-medical-records.htm
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United States have created opportunities for secondary use of electronic medical records

[Safran et al., 2007] that can help answer questions about adverse drug events or measure

the quality of health care delivery.

Yet even if we had full access to an EHR with a billion clinical visits each year, we may

not be able to answer the questions for the three topics posed above. Increased awareness

of a health topic doesn’t necessitate a clinical visit, parents come to believe in the dangers

of vaccines outside of doctors’ offices, and the indicators that may suggest suicide are likely

not being recorded by a health professional. Where can we find big data to answer these

and many other public health questions? What digital records can be analyzed to support

research on these topics?

Perhaps surprisingly, we already have a large source of patient information outside of

the doctor’s office: user-generated content from the web. This type of data includes, but

is not limited to, blogs and microblogs, forum discussions, online reviews of products and

services, and queries issued to search engines. But how does social media tell us anything

about health? How can any of these online activities be used to answer important public

health questions?

That is the topic of this book: how can large quantities of (often freely and publicly

accessible) social media data inform public health? Public health—the area of medicine

focused on the health of a population as a whole—depends on people’s behaviors: what

people do in their everyday lives. Public health topics are often more about what happens

outside than inside of a doctor’s office. Social media chronicles the lives of a population,

recording their beliefs, attitudes, and behaviors on a wide variety of topics. Since health is

an important part of people’s lives, social media reflects these health topics. By analyzing

social media we can gain new insights into public health.

Who is this book for?

Analyzing social media for public health requires two broad areas of expertise: computer

science and public health. We hope that academics, researchers, and practitioners from

both areas will find value in this book. Maybe you’re a data scientist who knows machine

learning or natural language processing and wants to learn how to apply it to public health,

or a health informaticist who wants to learn more about harnessing social media as an

alternative data source, or a public health researcher who wants to learn about how new

technologies offer new research possibilities. If so, you’re the intended audience for this

book.

For computer scientists, we expect that Chapter 2 will provide a summary of the core

principles of public health, and Chapter 5 will survey the areas of public health most suited

for work in social monitoring. For public health experts, we hope that Chapters 3 and 4 will

summarize the major types of social media data and relevant analytics. All readers should

benefit from Chapter 6, which describes limitations and concerns of this type of research.

PREPRINT



4 1. A NEW SOURCE OF BIG DATA

Of course, we encourage you to read the entire book and share in our amazement over what

has been achieved so far, and what new research may yield.

We expect that you’re coming into this field with one set of training and expertise,

either on the computational side or public health side, and want to start learning more

about the other area. This book is aimed at people in this stage, who want to know a

little bit about the other side and how it can intersect with their own background. What

this book will not do is make you an expert in a new area—this field is too broad and

diverse to cover everything comprehensively in one book. For instance, this book won’t

teach you enough to go off and build a machine learning system if you don’t already have

that expertise—but it will introduce you to the common types of tools that are available

and how they are used in social monitoring, which in turn will inform you about solutions

available for your problems. And while this book can’t possibly do justice to decades of

public health research in so many areas, it will at least make you aware of the major areas

of public health, why they are important, and how social media can help. The goal is to

equip you with enough knowledge to start thinking and having conversations about how

you can benefit from, or contribute to, this rapidly growing field.

Why a book? Why now?

This new field of social monitoring for public health is quite new, with the earliest foun-

dational papers barely ten years old. In fact, many of the data sources we discuss in this

book haven’t even been around for that long. So why write a book now? While research

in this area is fast paced, with new avenues of research yet unexplored, clear patterns have

emerged to form a recognizable research landscape. We have some idea of what works,

and what doesn’t work. What characteristics of public health questions are best suited for

social media analysis, and which computational tools are most suited for answering these

questions. Our goal is to provide a firm footing on which new researchers, as well as expe-

rienced experts, can base new research projects that build on what we’ve learned so far.

We cannot possibly foresee all of the exciting new advances in this field, but we hope this

book provides a basis on which these advances can start.

Another goal of this book is to promote rigor when working with social data. Methods

for careful study design and validation that are common in traditional public health research

have sometimes been ignored in research using social media, especially in earlier work, in

part due to disciplinary differences in methodologies and a lack of community norms and

expectations about how this kind of research should be done. The entire field came under

scrutiny after it was noticed in a widely publicized study that Google Flu Trends, a popular

digital flu monitoring system that we discuss throughout this book, had started performing

inaccurately and severely misfired in a recent year [Lazer et al., 2014b]. Researchers have

made a lot of progress in addressing the limitations of social data, but there are unresolved

concerns about reliability, validation, and ethics with this kind of research. We raise these
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issues in this book, particularly in Chapter 6, and we hope our discussion of these issues

will encourage more thoughtful work in this area.

The scope of this book

This book focuses on public health surveillance applications: tasks in which we can learn

about public health topics by passively analyzing existing social media data. We term this

social monitoring, a term that is inclusive of a wide range of online data sources, from

new social media platforms, to more traditional web forums, and to search engine queries.

There is a growing and promising area of research that examines how social media

and electronic interventions can change health behaviors and improve health outcomes.

However, while related in spirit, the tools, topics, and approaches of interventions have

significant differences with public health surveillance and social monitoring. This book

focuses on the latter to ensure a more comprehensive presentation.
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C H A P T E R 2

Public Health: A Primer

Sandra is a college student. One morning during the fall semester, Sandra wakes up with

a fever, cough, and headache. She feels sick enough that she decides to go to her campus’s

student health services. At the clinic, a doctor diagnoses Sandra with influenza—the sea-

sonal flu. For a young healthy person with no complications, the treatment is easy enough:

drink plenty of fluids, stay in bed, and take ibuprofen or acetaminophen to help with the

fever. After a few days, she will hopefully feel better and return to class.

Was it inevitable that Sandra contract the flu or could she have done something

to prevent it? For many people, flu is a preventable disease. The seasonal flu shot offers

remarkable protection against contracting influenza. The exact rates of immunity vary year

to year, but on the whole, it is the single most effective step one can take to prevent a

disease that infects tens of millions of Americans, hospitalizes hundreds of thousands, and

kills thousands each year.1 Many universities organize vaccination campaigns at the start

of the academic school year, offering free vaccines to students to prevent flu outbreaks. For

those who are medically able to receive the vaccination, momentary discomfort and minor

side effects are a small price to pay for protection against a potentially deadly virus.

Both of these cases—Sandra receiving treatment for the flu and Sandra receiving a

vaccine—are clear examples of healthcare and medicine. However, they are also within the

scope of public health.

What exactly is public health and how does it differ from medicine in general? As

a rough guide, medicine deals with the interaction of a single doctor and patient: Sandra

receiving care from her doctor for influenza. On the other hand, public health focuses on an

entire population and asks what can be done to improve the health and prevent disease in

mass. How can we inoculate a population to a disease, and track an outbreak as it develops?

How many patients do you need to treat before you are in the domain of public health?

After all, developing a new cancer drug can save millions of lives, but we wouldn’t consider

it public health. Conversely, an effective public health intervention may only impact a few

hundred people. The distinction between the two isn’t a matter of numbers.

Furthermore, the choice of topic alone doesn’t determine if work is considered public

health. Some areas of medicine fall almost entirely under the domain of public health,

such as controlling environmental pollution to limit negative health outcomes or improving

1Flu has such a low mortality rate that many people are surprised to learn that influenza is a leading cause of
death in the United States. Since it infects so many people, even a low mortality rate leads to thousands of
deaths.
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vehicle safety to prevent traffic fatalities. Other areas fall outside of public health research,

such as new surgical or radiology techniques. But many domains touch both public health

and traditional medicine, including drug overdoses, mental illness, and our example above:

infectious disease and vaccinations.

What makes an area a public health topic isn’t the disease or ailment: it’s the types

of interventions and goals.

Consider the vaccine example above. If Sandra had visited her doctor earlier in the

semester, the physician might have recommended she receive her annual flu shot during

her visit. This interaction isn’t in the domain of public health. Furthermore, the research

that goes into developing the vaccine isn’t necessarily public health either. Her campus

deciding to launch a vaccination campaign with the goal of reaching hundreds or thousands

of students, or working with local clinics to ensure they distribute vaccine information—that

is public health.

If what defines public health is a set of methods and goals, then what are they? This

chapter provides an answer. We will outline the basic goals and principles of public health.

Our goal is to provide basic fluency with the field to set the stage for understanding how

social media can advance public health understanding.

Before we get into specifics, we should step back to consider the amazing success

public health has had so far. Public health efforts have led to safer roads and cars to

dramatically reduce traffic deaths, improved workplace safety, reduced pollutants to create

safe drinking water, reduced infant mortality, dramatically reduced tobacco use to prevent

lung cancer, reduced cavities through water fluoridation, improved our ability to control

disease outbreaks, and nearly wiped out several infectious diseases with vaccines.2

Let’s consider the seasonal influenza vaccine as just one example. Many of us are

accustomed to our annual flu shot, but it’s worth admiring this marvel of our modern

public health system. We often forget just how unique it is to have a treatment that entirely

prevents a disease from ever infecting a patient. After all, the first vaccine (for smallpox)

was only invented at the turn of the 19th century. In the case of the seasonal flu shot, there

are a number of challenging factors.

We’ll focus for a moment on the United States. First, for a variety of reasons, each

season’s influenza strain requires its own vaccine. This means that researchers must develop

a new vaccine each year. Second, in order to allow enough time to produce millions of doses

of vaccines, decisions on what influenza strains should be included in the annual vaccine

must be made many months before the start of flu season. Researchers make educated

guesses based on currently circulating strains, as well as looking at countries in the southern

hemisphere. Since these countries have winter during the U.S. summer, we can gain clues as

to what strains may be circulating by looking at their flu season. As an aside, often times the

reason that a flu shot is less effective is because unanticipated strains are circulating. Third,

2http://www.who.int/about/role/en/
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Assurance 
•  Enforce laws 
•  Link people to care 
•  Assure competent 

workforce 
•  Evaluate effectiveness 

Assessment 
•  Monitor health status 
•  Diagnose health 

problems/hazards 

Policy Deployment 
•  Inform, educate, 

empower people 
•  Mobilize community 

partnerships 
•  Develop policies 

Figure 2.1: The three main stages of the public health cycle, along with their respective public

health activities, as proposed by the Core Public Health Functions Steering Committee [Harrell

and Baker, 1994].

rapidly manufacturing safe and effective vaccines for the start of the flu season requires

careful coordination between manufacturers and government agencies. Finally, vaccines

rolling off the manufacturing line isn’t enough. Health organizations need to decide how

many to order, and how to run vaccination campaigns. Should they run lots of advertising

early in the season against a possible early seasonal peak, or should they run a longer

campaign in anticipation of a late flu season? Will this season be mild, in which case they

may not heavily advertise, or will it be a particularly severe season? It is a remarkable

feat of the modern public health system that all of this comes together each year and

results in tens of millions of Americans receiving a vaccine, preventing numerous infections,

hospitalizations and deaths.

With a sense of amazement, let’s proceed to discussing the techniques and goals of

public health.
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2.1. THE PUBLIC HEALTH CYCLE 9

2.1 THE PUBLIC HEALTH CYCLE

Broadly speaking, public health focuses on two distinct goals. First, to monitor and assess

the health of a population, including the identification of health problems. Second, to craft

health policies to address the identified health problems, including the task of ensuring

the population has access to appropriate care. Rather than being distinct goals, they are

intertwined. As policies and healthcare practices are revised, public health researchers must

reassess the population to understand the effectiveness of the policies and practices and

adjust accordingly.

These two goals are reflected in the public health cycle, which consists of ten different

components [Harrell and Baker, 1994].3 Figure 2.1 illustrates how these components can be

organized around three main activities:

• Assessment: monitoring the health of a population, and identifying and evaluating

health issues.

• Policy development: education and development of community partnerships to

come up with policies that address the results of assessment.

• Assurance: enforcing policies, providing access to care, and evaluating the results of

the policies.

Social monitoring has a role to play in all three activities. It can be used to learn

about a population, to help develop partnerships and debate policy, and to provide care.

In disease prevention, we can measure infection prevalence in a population (assessment),

network to create new partnerships with healthcare organizations to disseminate influenza

information (policy development), and provide information on care, for example by sharing

links to organizations providing vaccines (assurance). There are numerous examples of

social media aiding health communication [Hawn, 2009, Moorhead et al., 2013] and various

health interventions [Korda and Itani, 2013]. Many health agencies use social media for

broadcasting information [Bartlett and Wurtz, 2015, Harris et al., 2013, Neiger et al., 2013],

and doctors use social media to engage patients and the public [Lee et al., 2014b].

As we said at the end of the previous chapter, this book will focus on assessment,

which in the case of social media typically involves the passive monitoring of data to learn

about health issues, and their prevalence, in a population. Social media is ideally suited

for surveillance: it provides a constant stream of information on a population that can

be monitored for topics of relevance to public health. Additionally, monitoring tasks is a

more accessible type of research for computer scientists looking to work in public health.

The main tools in this domain are data collection and analysis, as opposed to designing

interventions or working with patients. That’s not to say that there aren’t many examples

3http://www.cdc.gov/nphpsp/essentialservices.html
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10 2. PUBLIC HEALTH: A PRIMER

of computer scientists working successfully in policy development or assurance. Rather, we

find plenty of interesting problems in assessment, and we’re sure you will too!

2.1.1 PUBLIC HEALTH SURVEILLANCE

Public health surveillance concerns the “continuous, systematic collection, analysis and

interpretation of health data.”4 This includes monitoring for existing identified health con-

cerns as well as discovering new issues. You may also hear the term syndromic surveillance,

which is surveillance of a specific syndrome (a set of related symptoms).

Consider infectious disease surveillance, which is one of the largest and most

widespread examples of public health surveillance. The United States has a fairly robust

national surveillance system for infectious diseases. Perhaps the largest surveillance system

is FluView,5 the Centers for Disease Control and Prevention’s (CDC) national influenza

monitoring system. FluView encompasses several sources of data, including ILINet, a net-

work of thousands of clinics throughout the United States that report weekly statistics on

patients presenting with influenza-like illness. These reports, along with virology reports

and other sources, make up a weekly CDC report that tracks the rate of influenza infection.

A similar process is replicated on the state and local level in many jurisdictions, and many

U.S. states produce regular flu reports. Due to its popularity as an application for the use

of social media data, we’ll discuss influenza surveillance in detail in Section 5.1.1.

National infectious disease surveillance extends to other notifiable infectious diseases,

illnesses in which a physician is required to notify public health authorities of an infection.

Examples include measles, ebola, and dengue.6 Surveillance also extends to discovering new

illnesses. This is how AIDS was originally identified, by the CDC pro-actively investigating

unexplained infections [Curran et al., 2011].

Surveillance goes well beyond infectious diseases. Surveillance can identify novel to-

bacco products [Ayers et al., 2011a, Stanfill et al., 2011] and adverse reactions to medi-

cations [Budnitz et al., 2006], both of which have been achieved using social media (see

Sections 5.2.2 and 5.4.2, respectively).

2.2 SOURCES OF DATA

Public health depends on data about populations to support its goals. Traditionally, public

health draws data from two main sources.

The first is surveys, in particular telephone surveys, which have long been the back-

bone of public health. There are several, large-scale surveys run on a regular basis (typically

annually) that provide a steady supply of public health data. Examples include the Behav-

ioral Risk Factor Surveillance System (BRFSS) and the National Immunization Survey.

4http://www.who.int/topics/public_health_surveillance/en/
5http://www.cdc.gov/flu/weekly/
6https://www.cdc.gov/mmwr/mmwr_nd/
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BRFSS is run annually and collects detailed data from more than 300,000 Americans on

a wide variety of public health topics, including access to medical care, mental health, ex-

ercise, and tobacco use. Some large scale surveys rely on in-person interviews, such as the

annual U.S. National Survey on Drug Use and Health (NSDUH). Beyond these repeated

surveys, many researchers commission one-time telephone or in-person surveys. These can

include focus groups, which provide more free-flowing sources of information on public be-

liefs and attitudes. Online surveys are also growing in popularity due to their low cost,

though numerous quality challenges remain [Cook et al., 2000, Dredze et al., 2015, Eysen-

bach and Wyatt, 2002]. Finally, many private polling companies also conduct health-related

phone surveys. For example, Gallup uses phone surveys to measure the well-being of Amer-

icans.7 A growing thread of work with social media data consider methods for enhancing

or replacing traditional survey mechanisms [Benton et al., 2016b].

The second primary source of data come from clinical encounters. The influenza

surveillance network described above, ILINet, is the largest such example. Large scale

surveillance networks require significant coordination as they rely on active reporting from

clinics. More recently, researchers have turned to automated methods run on electronic

medical records that enable scalability and reduce the strain on manual reporters.8

While these are the most common data sources for public health, the field has a

tradition of seeking new and creative sources of data suited to specific analyses. These

include monitoring drug sales and pharmacy records [Heffernan et al., 2004, Magruder et al.,

2004] to track gastrointestinal illness [Edge et al., 2004] and use of nicotine replacement

therapies [Metzger et al., 2005]. Others have used insurance company billing records to track

mammographies [Smith-Bindman et al., 2006] and cardiovascular disease [Lentine et al.,

2009]. Some unusual data sources include counting cigarette butt waste in cities [Marah

and Novotny, 2011] and estimating community drug abuse by wastewater analysis [Irvine

et al., 2011, van Nuijs et al., 2011, Zuccato et al., 2008].

2.2.1 LIMITATIONS OF TRADITIONAL DATA

Monitoring practices that rely on traditional data sources have their advantages and limi-

tations. In general, these methods are well-understood and are viewed as reliable, provided

they are properly analyzed with biases corrected. Furthermore, many of these data sources

go back many years (e.g., annual survey questions), allowing for comparisons over time.

However, we wouldn’t be writing this book if there weren’t disadvantages to tradi-

tional methods and thus opportunities for social media data to make improvements. In the

case of telephone surveys, they are becoming less accurate over time, as fewer people use

landline phones, and the response rate drops [Kempf and Remington, 2007]. This introduces

particular bias against low-income and young adults in survey results [Blumberg and Luke,

7http://www.well-beingindex.com/
8http://www.cdc.gov/ehrmeaningfuluse/syndromic.html
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2007]. Surveys are also expensive to conduct, especially if the survey size is very large or

requires in-person interviews [Iannacchione, 2011]. The NSDUH survey mentioned above

takes 9 months to complete each year.

Clinical records address some of these issues, but are still expensive and complex to

set up. Many of the topics covered in surveys do not appear in clinical records, or if they

do, they are in unstructured text and thus hard to analyze.

Both of these methods can be slow. We cannot measure today’s influenza rate when

we do not get clinical records or sentinel site reports more frequently than once a week.

Finally, these methods can only cover certain topics, as discussed in Chapter 1. Many

areas of public health are understudied because they lack sufficient data to support research.

2.2.2 OPPORTUNITIES FOR SOCIAL MONITORING

These limitations create opportunities for researchers and practitioners to use social media

as a data source for learning about health and medicine [Grajales III et al., 2014]. Compared

to traditional public health monitoring, social media-based monitoring is fast, cheap, covers

a large population, and provides data on topics with little coverage from traditional sources.

One of the most popular social media platforms for health research has been Twitter

[Williams et al., 2013], which provides real-time streams of public data, often for free.

This type of data creates the potential for real-time health surveillance, which is generally

unattainable with traditional methods.

Certainly social media is not a panacea for all problems, and will not replace tradi-

tional data sources. We’ll discuss some of these limitations in detail in Chapter 6. However,

social media can play a complementary role to traditional monitoring. For example, social

media analysis can be used for hypothesis generation [Parker et al., 2015]: rapidly testing

out ideas that are not yet worth the time and effort of traditional data collection. The most

promising ideas can be forwarded to a more in-depth phase of traditional investigation.

Social media can also complement survey data with respect to its demographic coverage.

Young adults are overrepresented on Twitter [Duggan et al., 2015] yet underrepresented in

telephone surveys, an especially important characteristic for topics like electronic cigarettes

and illicit drug use.

A growing chorus of researchers argue that social media will play an important role in

public health and epidemiology [Brownstein et al., 2009, Dredze, 2012, Salathé et al., 2012,

2013b]. The U.S. government has taken notice and has started to consider how social media

data can aid public health efforts. This has included hosting competitions for building social

media-based systems for disease surveillance [Biggerstaff et al., 2016].9 10 With social media

9http://www.nowtrendingchallenge.com/
10https://nowtrending.hhs.gov/
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adoption expanding,11 and with new advancements in technology, social media is likely to

have an increasing impact on public health.

11http://www.pewinternet.org/fact-sheets/social-networking-fact-sheet/
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C H A P T E R 3

Social Data

What constitutes “social data” and how can this type of data be used for public health

monitoring? This chapter describes different types of social media, including well-known

platforms like Twitter and Facebook, as well as other online platforms that may be less

known but still valuable. We take “social data” as an broad term that includes a variety of

the types of online data.

Before embarking on any social monitoring project, it is important to understand the

social media landscape and the options for data sources. For example, it may surprise you

to learn that Facebook, despite being the world’s largest social network, is rarely used for

social monitoring. This is due to a variety of factors, including how the platform is used by

people and the tools available for data collection. In contrast, Twitter dominates the social

monitoring community, for reasons that are scientifically motivated (it provides a large and

relatively representative sample) and reasons that are not (the data is free and convenient).

We’ll compare different platforms, describing the affordances of different data sources and

data types, their strengths and weaknesses, and their appropriateness for different health

applications.

Finally, we briefly describe how to obtain data from a few popular platforms, with

pointers to tools and tutorials.

3.1 WHAT IS SOCIAL DATA?

Social data refers to data that is created by people with the goal of sharing the data with

others. For example, when people post messages or photos online to share with others,

the text and images of the messages and photos are considered social data. Social media

websites are the platforms through which social data is created. Examples of popular social

media platforms include Twitter and Facebook. In general, social data is created by ordinary

people, rather than professional writers or domain experts (e.g., clinicians).

This book will also use “social data” to refer to data that is created by people on

the web but not necessarily intended for social sharing, including search query data, be-

cause this data is prominently used for public health monitoring in addition to standard

social media data. We also include data generated by people’s online activities other than

intentionally posted messages, like location information—the “digital traces” left behind

by people’s online behavior [Welser et al., 2008]. What we don’t generally include is data
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3.2. MONITORING OF SOCIAL DATA 15

created specifically for researchers (like survey responses), although we do discuss how new

technologies can facilitate collection of that kind of data.

3.2 MONITORING OF SOCIAL DATA

Social monitoring refers to the act of analyzing social data—either by manually reading

the data, or automatically using computational tools—to learn about the world. Many peo-

ple use social media platforms to publicly share information about what they are currently

doing and thinking. By analyzing social data, it is possible to infer what is happening

around the world and within populations.

Social monitoring is also a form of infodemiology, or information epidemiology, a

term introduced by Eysenbach [2002] to describe the study of health determinants and the

sharing of health information on the internet. Some of the earliest studies of health on the

internet looked at the quality of health information on available websites [Davison, 1996,

Impicciatore et al., 1997]. Social monitoring focuses on studying user-generated content to

learn about a population.

It is possible to measure and understand all sorts of population opinions and behav-

iors through social monitoring. For example, social media can be monitored to measure

consumer sentiment [Bian et al., 2016, Chamlertwat et al., 2012] and political sentiment

[O’Connor et al., 2010]. Social monitoring has been used for forecasting sales [Asur and

Huberman, 2010], predicting financial markets [Bollen et al., 2011], forecasting elections

[Digrazia et al., 2013, Tumasjan et al., 2010], and estimating crowd sizes [Sinnott and

Chen, 2016] and traffic congestion [Tse et al., 2017]. It is also a rich resource for interdisci-

plinary work, such as combining health and economics [Althouse et al., 2014, Ayers et al.,

2012b] or health and politics [Dredze et al., 2017].

Social monitoring can be used to answer scientific questions, often in social science

[Cioffi-Revilla, 2010, Lazer et al., 2009], including learning regional dialects [Eisenstein

et al., 2010] and learning associations with personality traits [Schwartz et al., 2013].

We mention all these examples from different areas to give a taste of the enormous

potential of social data. Of course, this book will focus on applications in public health,

which we’ll survey throughout.

3.2.1 ACTIVE VERSUS PASSIVE MONITORING

Social monitoring can take an active or passive approach. Active monitoring requires

explicit participation from users, while passive monitoring makes use of data already pub-

lished by users, without requiring user interaction. An example of active monitoring is

asking a sample of Twitter users which presidential candidate they favor, while a passive

monitoring approach might analyze what Twitter users are writing about the candidates

and infer sentiment toward candidates from the messages alone. Passive monitoring repre-

sents the bulk of research into social monitoring due to its relative ease and low cost.
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We will focus on passive monitoring in this book, but will mention active approaches

when relevant. See Hill et al. [2013] for a discussion on the utility of active approaches to

public health surveillance compared to passive monitoring.

3.2.2 TYPES OF USERS

This book focuses on monitoring of people in a population, and we therefore focus on

messages written by individuals. However, large swaths of social data are produced by or-

ganizations, bots, and spammers. These messages also have value in public health analyses.

Heldman et al. [2013] considered how public health agencies can use social media and others

discuss how the medical profession can use social media to communicate with the popu-

lation [Moorhead et al., 2013, Thackeray et al., 2008]. McCorriston et al. [2015] introduce

automated methods for differentiating Twitter accounts between individuals and organi-

zations. Whether to detect and remove spammers in analyzing health messages in social

media is the subject of debate [Allem and Ferrara, 2016, Kim et al., 2016], but certainly

the presence of such messages should be considered when designing research studies.

3.3 TYPES OF PLATFORMS

Social data comes in many forms. Different online platforms and websites exist for different

audiences and different purposes, and different platforms may be better suited for particular

public health goals. This section will describe the different types of social media, and will

discuss the types of health applications for which they are appropriate.

3.3.1 GENERAL-PURPOSE SOCIAL MEDIA

Blogs and microblogs

Blogs (short for weblogs) are websites where individuals post messages and articles. Popular

blogging platforms include Tumblr, WordPress, and Blogger.

Microblogs, such as Twitter and its Chinese counterpart, Sina Weibo, are social media

platforms where users share brief “status updates”. The defining characteristic of microblogs

is the short message length, in contrast to standard blogs. For example, Twitter messages

can be no longer than 140 characters, a restriction that has been in place since its inception

(though it has been loosened in various ways, first by using URL shortening, and more

recently by not counting usernames toward the limit). Other platforms like Facebook have

higher length limits, but messages still tend to be short. Smaller specialty platforms often

have specific features that can change how they are used, such as the now defunct app

YikYak which offered users anonymity [Koratana et al., 2016].

Microblogs are popular avenues for sharing news as well as the current status, beliefs,

and activities of users, making them desirable for social monitoring. These platforms are
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intended for broadcasting information, often to a general, public audience. As such, content

on these platforms is most often public, even though private accounts are possible.

Microblog users will often share messages written by others, called “retweets” in

Twitter. Retweets are repostings of previously-published messages, rather than original

content, and are often handled separately in systems that use social media data, since

retweet activity can differ from original tweet activity.

Social networks

Social networking platforms, such as Facebook and LinkedIn, are websites where users

can connect with one another. In contrast to microblogs, where users typically publicly

broadcast information, information published on social networking platforms is typically

shared with a limited audience, such as friends and coworkers. Such websites are primarily

designed for maintaining relationships and accounts are often private, although there are

plenty of public accounts on Facebook that share general news. For these reasons, social

networks are used less commonly for public health surveillance. However, social network

data can be valuable for research that investigates social factors [Cobb et al., 2011].

Media sharing platforms

Some social media websites primarily serve as platforms for sharing visual media, such as

videos (e.g., YouTube) and photos (e.g., Instagram, Flickr) [Vance et al., 2009]. Media can

reveal population attitudes and behaviors, such as dietary choices revealed through photos

[De Choudhury et al., 2016a] and drug use captured in videos [Morgan et al., 2010]. Addi-

tionally, the comments on sites like YouTube can be helpful for some health applications

[Burton et al., 2012a, Freeman and Chapman, 2007].

General-purpose sharing websites include Reddit and Digg, where users submit links

to other websites and articles, in addition to media such as images and videos. These

websites are typically organized into different categories of discussion, such as politics and

science. For example, Reddit is organized into thousands of topic-specific “subreddits”

which are created and moderated by users.

For social monitoring, often the text comments and discussions on these platforms

are used as data rather than the media itself.

3.3.2 DOMAIN-SPECIFIC SOCIAL MEDIA

In addition to general-purpose social media, some websites exist for more narrow purposes,

including in the domain of health.

Review websites

Online reviews are a focused type of social media, where users write reviews (usually in-

cluding numeric scores) of products and services. Some review websites are quite broad,
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like Yelp, which is most commonly used to review businesses and restaurants. However,

many review websites are domain-specific, including in the domain of health. For example,

RateMDs.com is a website where people can post reviews of their doctors, and Drugs.com

allows users to write reviews of medications.

In the domain of public health, researchers have monitored review websites to detect

food poisoning outbreaks (from restaurant reviews) [Harrison et al., 2014] and drug side

effects (from medication reviews) [Yates and Goharian, 2013].

Patient communities

There are many web-based communities designed for patients to share information and

experiences with one another. Online communities often use discussion forums—websites

where users can create and respond to threads of conversation and discussion—as the mode

of communication. Forums can be used to communicate information as well as to provide

social support. Some patient forums also function as support groups, such as the websites

DailyStrength and MedHelp.

A well-known patient community is PatientsLikeMe, where patients share informa-

tion, especially regarding treatment options. In a famous experiment, hundreds of Patients-

LikeMe members experimented with a novel treatment for amyotrophic lateral sclerosis

(ALS) and shared their results, functioning as an informal, grassroots clinical trial [Wicks

et al., 2011].

Additionally, some grassroots patient communities have developed in general-purpose

platforms. For example, people create “group chats” on Twitter, where interested users

agree on a particular hashtag and meeting time, and regularly have a conversation on a

topic (e.g., cancer support chat on a weekly basis). Approximately 10% of Twitter group

chats are about health [Cook et al., 2013].

3.3.3 SEARCH AND BROWSING ACTIVITY

While most social media data consists of information that is broadcast by users, other useful

sources of information are activities performed by users on the web.

One of the most common types of web activity is search. A query in a search en-

gine suggests an interest in a topic, and thus by analyzing what people are searching for,

researchers can infer what people are interested in. In public health, search data was most

famously used by the Google Flu Trends system (Section 5.1.1), which estimates flu preva-

lence based on the number of people who are searching for flu-related information, under

the assumption that those who are interested in flu are probably experiencing flu.

Search engines, such as Google, Bing, and Yahoo, log the queries that are searched

by users. Raw query logs are private data, but some engines make aggregate statistics

about query volumes publicly available through services such as Google Trends, described

in Section 3.5.
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Search data can also be analyzed from domain-specific websites, such as PubMed

[Yoo and Mosa, 2015], often through private services not publicly obtainable, in contrast to

Google Trends. For example, researchers from the National Cancer Institute partnered with

Ask Jeeves to understand the information needs of cancer patients [Bader and Theofanos,

2003], and Santillana et al. [2014a] obtained search data from UpToDate, a disease database

used by clinicians, to infer disease prevalence from clinician activity.

Another useful type of activity is browsing —a trace of the web pages that are

visited by a user. Such data can come from detailed logs recorded by browsers such as

Google Chrome and Microsoft Internet Explorer, but this data is private and, as such, is

typically limited to researchers working at these companies [schraefel et al., 2009]. Outside

researchers can obtain browser activity logs directly from the machines of participants,

but obtaining such data requires the recruitment of consenting volunteers, and thus such

research will typically be small scale [Fourney et al., 2014].

A public source of browsing data comes from Wikipedia, which public health re-

searchers have utilized. Wikipedia publicly publishes timestamped logs of visits to each ar-

ticle, and this data can be used to measure levels of interest in articles such as “Influenza”

or “Dengue fever” [McIver and Brownstein, 2014, Tausczik et al., 2012]. A limitation of

Wikipedia logs as a data source is that they do not contain information about the locations

of the readers, unlike most of these data sources (Section 3.4.2). Instead, researchers have

used the language of articles as proxies for location [Generous et al., 2014], such as resolv-

ing French-language articles to France. However, this approach is coarse and unreliable, as

many languages are widespread.

3.3.4 CROWDS AND MARKETS

Crowdsourcing is a method of obtaining feedback and assistance from large numbers of

people using online services. For example, Amazon’s Mechanical Turk service is a general-

purpose platform where users can post tasks to be completed, and other users are paid to

complete the tasks [Buhrmester et al., 2011, Callison-Burch and Dredze, 2010, Goodman

et al., 2013, Paolacci et al., 2010, Shapiro et al., 2013]. Crowdsourcing platforms allow for

large-scale recruitment of workers to participate in projects.

Domain-specific crowdsourcing systems exist for health. For example, Flu Near You

[Baltrusaitis et al., 2017, Crawley et al., 2014, Smolinski et al., 2015] is an application where

users are periodically asked to share their health status—whether they are experiencing the

flu—and this data can be used to estimate flu prevalence.

Crowd-based systems are a form of active monitoring, as discussed in Section 3.2.1.

That is, learning about a population through crowdsourcing requires active involvement

of the community, in contrast to the other platforms described above, in which publicly

accessible information can be passively monitored.
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Prediction markets are another way of harnessing crowds. Prediction markets are

markets where future outcomes are traded—essentially, participants bet on what they think

will happen—and prices can be used to measure the likelihood of different outcomes, ac-

cording to the beliefs of the crowd. A few studies have shown prediction markets to be

effective for forecasting diseases [Li et al., 2016, Polgreen et al., 2007, Tung et al., 2015].

3.3.5 COMPARISON OF PLATFORMS

The choice of data source in this diverse landscape is motivated by the type of application.

General-purpose social media is a good source for identifying common, real-time trends.

Topics such as influenza and vaccines are often discussed in the population at large, and so

are well-represented in general-purpose social media. Furthermore, the nature of this type

of platform provides real-time data, making it a good resource for studying current trends.

Moreover, general-purpose platforms include discussion on a variety of topics outside of

health, which allows one to study how people’s habits and behaviors across a variety of

domains interact with their health.

There are many general-purpose social media platforms, each with their own charac-

teristics, features, and user populations. See Osborne and Dredze [2014] for a comparison

of some of these platforms.

In contrast, domain-specific social media is best-suited for an in-depth study of a

specific health condition, especially those that are not common in the general population.

The communities surrounding specific diseases and health topics provide rich details into

the thoughts and behaviors of people engaged with the particular topic. Furthermore, many

of these forums go back years, allowing for analysis of trends over a long period of time.

Search activity provides both real-time and historical capabilities. For example,

Google Trends1 provides historical data back to 2004, as well as daily updates of search

activity (and in some cases, hourly). Additionally, search queries cover a wide range of sub-

jects and so can provide information on low-prevalence health conditions. However, search

activity often misses the “why” of health behaviors. While we can sometimes ascertain the

reason behind a query based on the keywords in a search, often times it is impossible to

know the user intention. In short, search traffic can answer “what”, but not always “why.”

Additionally, because search activity in the form publicly available to researchers is aggre-

gated across users, we cannot undertake the type of user analysis, or the linking of multiple

queries to a single user, that may be needed for fully understanding the data.

We note that not only are different platforms used in different ways, but they are

used for different topics of health discussion. De Choudhury et al. [2014b] compared the

prevalence of mentions of health issues in tweets versus search query logs, finding that more

serious and stigmatizing conditions (e.g., sexually transmitted disease) are more prevalent

in search logs than tweets, while certain benign conditions (e.g., jet lag) are more prevalent

1https://www.google.com/trends/
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in Twitter. The authors thus suggest using caution when using Twitter to study high-

stigma conditions, due to the apparent self-censorship being applied in public social media.

However, a study of privacy settings in Facebook did not find large differences in content

posted by public accounts versus private accounts, which suggests that public social media

data may not be as biased as previously believed [Fiesler et al., 2017].

Finally, the users of different platforms have different demographic characteristics;

see Duggan et al. [2015] for a summary.

3.4 TYPES OF DATA

We will now discuss the various forms of data available from social media, such as text (e.g.,

from tweets or search queries), locations (e.g., precise coordinates or geographic entities),

and social network information (e.g, friends and followers).

3.4.1 CONTENT

The bulk of web content is in the form of text. Text can often be analyzed by searching for

messages containing particular words or phrases of interest. More sophisticated analyses of

text require natural language processing, described in Section 4.1.1, which is a computational

approach to automating linguistic analysis of language. Most social monitoring uses text,

and this book will focus on text.

Other content may come in the form of images (such as through Instagram) and

video (such as through YouTube), which are often also accompanied by text in the form of

captions, descriptions, and user comments. Images and video can be automatically analyzed

and categorized using computer vision, a computational approach to analyzing imagery. For

example, Garimella et al. [2016] found that automatically extracted tags of Instagram im-

ages can be useful for some health applications, like detecting excessive drinking. However,

these types of tools are limited, so most research using this type of media have relied on

manual analysis by people.

3.4.2 METADATA

Metadata, such as the time and location of messages, are crucial for social media analysis,

in order to understand variation in populations.

Time

Almost all data on the web is timestamped, and this information is typically trivial to

collect. Often individual messages will come with timestamps, typically at the granularity

of seconds. For some types of data, individual messages are unavailable, and only aggregate

information over an interval of time, such as a day or month, is available. This is the case
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with services like Google Trends, which do not share individual search queries, but will

provide the number of queries issued within various time intervals.

Location

Obtaining the location of a message—that is, the location of the author who wrote it—

is often more difficult to obtain than time information, yet is often critical for health

applications [Burton et al., 2012b]. Sometimes location information is provided by the social

media platform. For example, Twitter allows users to provide detailed location information

in the form of latitude and longitude coordinates, which are sometimes available when

users participate with a GPS-enabled device. Additionally, users can tag a location in their

tweet, such as a city, neighborhood or specific point of interest. Unfortunately, this type of

location data is rare; only a small percentage of tweets contain coordinates. For example,

roughly 1–3% of Twitter messages are geocoded.

To increase the amount of geolocated data, researchers have developed a range of

methods for automatically inferring location from available user data [Han et al., 2014].

There are a variety of methods for inferring location information, and we summarize these

techniques in the next chapter in Section 4.3.1.

Location stability Some location data is dynamic, meaning that it is updated to the

current location for each message that is sent. GPS-tagged tweets and IP address geoloca-

tion are dynamic: they describe the location of the user when the activity was performed.

Other information is static and may stay the same as a person moves around. For example,

the location field of a user profile typically describes a user’s primary home location, and

does not change as a person travels. In general, the location of a user can be difficult to

quantify, as locations can change and their accuracy can be subjective. For example, the

identification of a user as residing in New York City, but who actually resides across the

river in New Jersey, may be sufficient for many applications, even though the identification

has the wrong state. Similarly, for a user who resides in El Paso, Texas, United States

and works in Juarez, Chihuahua, Mexico, either city would be an accurate location despite

being in different countries. In contrast, confusing a state or country would be a major

geolocation error in most cases. See Dredze et al. [2013] for some of the challenges with

evaluating geolocation.

3.4.3 SOCIAL NETWORK STRUCTURE

Another useful type of data is the network structure of a social platform, meaning the links

or relationships between platform users. Social network structure is important for certain

types of public health surveillance, such as predicting the spread of disease [Sadilek et al.,

2012a,b] or understanding social support for healthy behaviors such as smoking cessation

[Cobb et al., 2011].
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Many platforms explicitly encode relationships between users. For example, in Face-

book, users become “friends” upon mutual agreement. In Twitter, users “follow” other

users, meaning that they subscribe to read the content of their followers. Following a user

on Twitter is an asymmetric act and does not require mutual consent.

It is also possible to implicitly construct a social network. For example, one might

infer a relationship between users if they communicate on a social network [Rao et al., 2010].

Even if explicit network information is available, implicit communication networks may also

serve as a useful alternative, as these networks imply a different type of relationship. For

example, Twitter users who communicate with each other may have a stronger relationship

than users who follow each other but do not communicate. An “affiliation network” connects

two users who share a common activity, like reading the same article or purchasing the same

product [Mishra et al., 2013].

Network relationships can be either directed or undirected. Undirected relationships

are symmetric, such as “friend” relationships in Facebook. Directed relationships flow from

one user to another, such as a “follow” relationship in Twitter, in which one user follows

another. Directed relationships can always be treated as undirected, if needed for a task,

by removing the directionality.

3.5 DATA COLLECTION

We provide a brief summary of some of the most popular data sources in the social media

research community and their associated APIs (application program interfaces) to serve

as a starting guide. We encourage readers to visit the developer pages of the platform of

interest for more information. Working directly with an API may be beyond the ability of

researchers without technical training, though there are some guides written specifically for

non-technical researchers (see Denecke et al. [2013], Yoon et al. [2013], Schwartz and Ungar

[2015]). Some of the platforms described below make data available in easy-to-use formats,

such as comma-separate values (CSV), usually including a rich variety of metadata, and

others sell data in formats suitable for non-technical researchers.

Twitter makes it very easy to obtain a wide variety of data using their API.2 The streaming

API provides a constant real-time data feed (approximately 1% of all tweets), while the

REST API allows for searching through (limited) historical data. This allows researchers to

collect targeted datasets based on specific keywords, locations, or users. There are a variety

of tutorials and tools available for quickly starting a Twitter data collection.3 Commercial

options for larger data collection are available through Gnip, Twitter’s enterprise API

2https://dev.twitter.com/
3For example, see http://socialmedia-class.org/twittertutorial.html and https://github.com/mdredze/

twitter_stream_downloader
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platform, which can provide samples larger than 1% and historical data matching specific

queries. Gnip also provides data from other platforms, including Instagram and YouTube.4

Facebook also has a robust API that allows for a number of different data queries,5 in-

cluding the Graph API, which is the primary way to read from the Facebook social graph.

However, unlike Twitter, most Facebook data is not publicly available, and so it is not

available unless one has explicit permissions from the data author. Additionally, Facebook

provides various search methods but not a streaming method, making it difficult to obtain

random samples of data. An alternate approach is to develop a Facebook app that obtains

explicit sharing permissions from users. While time consuming to develop and promote,

investments in Facebook apps can yield valuable datasets [De Choudhury et al., 2014a,

Schwartz et al., 2013].

Reddit is a popular online forum and content-sharing service, where users can submit

content and leave comments. It is one of the most popular forum sites, and therefore hosts

content on a wide range of topics including health. Reddit provides an API that makes it

easy to download content.6

Google Trends provides aggregated keyword search data going back to 2004, with the

ability to show trends specific to a location, time or category.7 The site also suggests

related queries, so that users can expand their search to find other queries relevant to their

topic of interest. Google allows data to be exported in CSV format. Bing provides a similar

tool, though it is aimed at advertisers.8

Additionally, some health-specific data resources are described in Section 5.1.4 for

the purpose of disease surveillance.

4https://gnip.com/sources/
5https://developers.facebook.com/
6https://www.reddit.com/dev/api
7https://www.google.com/trends/
8http://www.bing.com/toolbox/keywords
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C H A P T E R 4

Methods of Monitoring

This chapter surveys methodology: the types of information that can be analyzed and how

to do so, covering machine learning, statistical modeling, and qualitative methods. We will

start by discussing quantitative methods—statistical analysis of data—including large-scale

computational approaches to categorizing and extracting trends from social data, both at

the level of populations and individuals. We also discuss validation, how you know when

to trust your analysis. We then briefly discuss qualitative methods as a potentially richer

but smaller-scale methodology. Lastly, we discuss different issues involved in designing a

study, including methods for inferring population demographics, an important component

of public health research.

This chapter touches on some advanced concepts in machine learning that won’t be

taught in depth in this book—though we do provide a few pointers to other tutorials and

tools. Our aim is to provide a high-level overview of these methods, introducing important

terminology, surveying different ways of approaching a problem, and giving examples of

typical pipelines for conducting social monitoring.

4.1 QUANTITATIVE ANALYSIS

We begin by surveying the common quantitative methods for analyzing social data. We

will summarize methods for identifying and filtering for relevant data, then analyzing the

data, for example by extracting trends, and then validating the extracted information. This

pipeline of quantitative methods is illustrated in Figure 4.1.

We will use one of the most common social monitoring uses, influenza surveillance,

as our running example of social monitoring (with other tasks mentioned as needed) in

order to illustrate the quantitative methodologies, but these methods are applicable to

other public health problems as well.

The goal of influenza surveillance (described later in Section 5.1.1) is to measure the

prevalence of influenza (flu) infection in a population. Official monitoring by government

health agencies is delayed by at least one to two weeks, so social media has been used as

a real-time supplementary source of monitoring. If you are familiar with social monitoring

of influenza, you may find it strange that we chose to use it as our running example: the

most popular system, Google Flu Trends, has been widely criticized for being unreliable.

However, keep in mind that Google Flu Trends was one of the earliest systems to do

this, using methods that are limited by today’s standards. While the system resulted in
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Original  data Relevant  data

Filtering

Keyword  search
Machine  learning
Topic  modeling
Section  4.1.1

Validation
Section  4.1.4

Prediction
Section  6.2

Trends

Data  APIs
Section  3.5

Inference

Counting
Normalization
Regression
Section  4.1.2

Figure 4.1: A standard pipeline of quantitative methods for inferring trends from social data.

The various steps are described in the indicated sections.

substantial errors, they are errors that could have been avoided using more sophisticated

techniques, including those implemented by Google Flu Trends itself in later iterations

[Santillana, 2017]. The takeaway is not that social monitoring for flu doesn’t work, but that

it must be done thoughtfully and validated extensively. We will point out potential pitfalls

as we go along, discussing validation in Sections 4.1.4 and 4.2.1, with general limitations

discussed extensively later in Chapter 6.

4.1.1 CONTENT ANALYSIS AND FILTERING

The first step in any data driven project is to ensure you have the data! When it comes

to social monitoring, and the data comes in the form of tweets or messages on a variety

of topics, it may be challenging to know if the available data support your research aims.

Before investing time into planning a project, or collecting and processing data, you should

determine if the data supports your goals. We typically advise researchers to identify 10

messages (by hand or through keyword search) that exemplify the data needed for the

project. For example, Twitter provides a web search interface that makes these types of

explorations easy.1 This process can also help you decide the best method for filtering the

data. If you can’t find enough data at this stage, it’s unlikely you’ll be able to automatically

mine the needed data.

When you know what you are looking for, you are ready to filter the data down to

the subset of data relevant to the public health task at hand. For example, if the task is

to conduct disease surveillance, then one must identify content that discusses the target

disease (e.g., influenza). Approaches to filtering include searching for messages that match

certain phrases, or using more sophisticated machine learning methods to automatically

identify relevant content. We now describe these approaches in a bit more detail.

1https://twitter.com/search-home
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Keyphrase filtering or rule-based approaches

Arguably the simplest method for collecting relevant content is to filter for data (e.g., social

media messages or search queries) containing certain keywords or phrases relevant to the

task. For example, researchers have experimented with Twitter-based influenza surveillance

by filtering for tweets contain words like “flu” or “fever” [Chew and Eysenbach, 2010,

Culotta, 2010, 2013, Lampos and Cristianini, 2010]. For Twitter data, tweets matching

certain terms can straightforwardly be collected using Twitter’s Search API, described in

Section 3.5. We note that there exist clinically validated sets of keywords for measuring

certain psychological properties, such as emotions [Pennebaker et al., 2001].

Keyword and phrase-based filtering is thought to be especially effective for search

queries, which are typically very short and direct, compared to longer text, like social media

messages [Carmel et al., 2014]. Search-driven systems like Google Flu Trends [Ginsberg

et al., 2009] rely on the volume of various search phrases. Most research that uses search

query volumes is in fact restricted to phrase-based filtering, as data available through

services such as Google Trends (described in Section 3.5) come as aggregate statistics about

certain search terms, rather than the raw text that is searched, which is private data.

A special type of keyword is a hashtag. Hashtags are user-created labels (denoted

with the # symbol) used to organize messages by topic, used primarily in status updates

(e.g., on Twitter) or photo captions (e.g., on Instagram). Because hashtags are widely used

by different users, they can serve as useful filters for health monitoring. For example, if one

was interested in understanding physical activities in a population, one might search for

hashtags such as #workout or #running. However, additional filtering may be needed to

distinguish between messages by ordinary users and by advertisers or media outlets, e.g.,

“I had a great #workout today!” versus “Top 10 #Workout Tips.” Rafail [2017] cautions

that hashtag-based samples of tweets can be biased in unexpected ways.

Beyond searching for keywords or hashtags, other rules can be applied to filter for

data. For example, one might choose to exclude tweets that contain URLs, which are less

likely to be relevant for flu surveillance [Lamb et al., 2013]. By using machine learning,

described in the next subsection, systems can learn which characteristics to favor or disfavor,

rather than defining hard rules by hand.

Machine learning classification

Keyword-based filtering is limited because it does not distinguish between different contexts

in which words or phrases appear. For example, not all tweets that mention “flu” indicate

that the user is sick with the flu; a tweet might also discuss influenza in other contexts (for

example, reporting on news of laboratory experiments on influenza) that are not relevant

to surveillance.

A more sophisticated approach is to use machine learning to categorize data for

relevance based on a larger set of characteristics than words alone. An algorithm that
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automatically assigns a label to a data instance (e.g., a social media message) is called

a classifier. A classifier takes a message as input and outputs a discrete label, such as

whether or not a message is relevant. For example, Aramaki et al. [2011] and Achrekar

et al. [2012] constructed classifiers to identify tweets that are relevant to flu surveillance.

Others have built classifiers to identify tweets that are relevant to health in general [Paul

and Dredze, 2011, Prieto et al., 2014, Yin et al., 2015]. Lamb et al. [2013] combined multiple

classifiers for a pipeline of filtering steps: first, a classifier identifies if a message is relevant

to health, and if so, a second classifier identifies if a message is relevant to flu.

Classifiers learn to distinguish positive and negative instances by analyzing a set of

labeled examples, and patterns learned from these “training” examples can then be used

to make inferences about new instances in the future. Because training data is provided as

examples, this approach is called supervised machine learning.

Common classification models include support vector machines (SVMs) and logistic

regression, sometimes called a maximum entropy (MaxEnt) classifier in machine learning

[Berger et al., 1996]. Logistic regression is commonly used for public health, traditionally as

a tool for data analysis (see discussion of regression analysis in Section 4.1.3) rather than

as a classifier, which predicts labels for new data. Recent advances in neural networks—

loosely, models that stack and combine classifiers into more complex models—have made

this type of model attractive for classification [Goldberg, 2017]. While more computationally

intensive, neural networks can give state-of-the-art performance for classification.

Classifiers treat each message as a set of predictors, called features in machine learn-

ing, typically consisting of the words in a document, and sometimes longer phrases as well.

Phrases of length n are called n-grams, while individual words are called unigrams. One

can also use additional linguistic information as features. Natural language processing

(NLP) is an area of computer science that involves processing human language, and a num-

ber of NLP tools exist to parse linguistic information from text. For example, Lamb et al.

[2013] showed that classification performance can be improved by including linguistic fea-

tures in addition to n-grams, like whether “flu” is used as a noun or adjective, or whether

it is the subject or object of a verb.

We won’t get into the technical details of classification in this book, but many of

the common toolkits for machine learning (a few of which are described at the end of this

section) provide tutorials.

Unsupervised clustering and topic modeling

An alternative to classification is clustering. Clustering has the same goal as

classification—organizing messages into categories—but the categories are not known in

advance; rather, messages are grouped together automatically based on similarities. This

is a type of unsupervised machine learning.
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Figure 4.2: Examples of ailment clusters discovered from tweets, learned with the Ailment

Topic Aspect Model (ATAM) [Paul and Dredze, 2011]. The word clouds show the most probable

words in each ailment, corresponding to (clockwise from top left) allergies, dental health, pain,

and infuenza-like illness.

A popular method of clustering for text documents is topic modeling. In particular,

probabilistic topic models are statistical models that treat text documents as if they are

composed of underlying “topics”, where each topic is defined as a probability distribution

over words and each document is associated with a distribution over topics. Topics can be

interpreted as clusters of related words. In other words, topic models cluster together words

into topics, which then allows documents with similar topics to be clustered. Probabilistic

topic models have been applied to social media data for various scientific applications

[Ramage et al., 2009], including for health [Brody and Elhadad, 2010, Chen et al., 2015b,

Ghosh and Guha, 2013, Paul and Dredze, 2011, 2014, Prier et al., 2011, Wang et al., 2014].

The most commonly used topic model is Latent Dirichlet Allocation (LDA) [Blei

et al., 2003], a Bayesian topic model. For the domain of health, Paul and Dredze developed
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the Ailment Topic Aspect Model (ATAM) [2011, 2014], an extension of LDA that explicitly

identifies health concepts. ATAM creates two different types of topics: non-health topics,

similar to LDA, as well as special “ailment” word distributions with words that are found in

dictionaries of disease names, symptom terms, and treatments. Examples of ATAM ailments

are shown in Figure 4.2.

An advantage of topic models over simple phrase-based filtering is that they learn

many words that are related to concepts. For example, words like “cough” and “fever”

are associated with “flu”. When inferring the topic composition of a document, the entire

context is taken into account, which can help disambiguate words with multiple meanings

(e.g., “dance fever”). A disadvantage is that they are typically less accurate than supervised

machine learning methods, but the tradeoff is that topic models can learn without requiring

annotated data. Another consideration of topic models is that they discover broad and

popular topics, but additional effort may be needed to discover finer-grained issues [Prier

et al., 2011].

Another use of topic models, or unsupervised methods in general, is for exploratory

analysis. Unsupervised methods can be used to uncover the prominent themes or patterns

in a large dataset of interest to a researcher. Once an unsupervised model has revealed

the properties of a dataset, then one might use more precise methods such as supervised

classification for specific topics of interest.

The technical details of probabilistic topic models are beyond the scope of this book.

For an introduction, we recommend reading Blei and Lafferty [2009].

Which approach to use?

We have mentioned a variety of approaches to identifying social media content, including

keyword filtering, classification, and topic modeling. These approaches have different uses

and tradeoffs, so the choice of technique depends on the data and the task.

Most research using a large, general platform like Twitter will require keyword filter-

ing as a first step, since relevant content will be such a small portion of the overall data,

whether that requires keywords related to a particular topic like flu or vaccination, or health

in general—for example, Paul and Dredze [2014] used a few hundred health-related key-

words to collect a broad range of health tweets, which is still only a small sample of Twitter.

Keyword filtering can be reasonably reliable for obtaining relevant content, although it may

miss data that is relevant but uses terminology not in the keyword list, or it may identify

irrelevant data that uses terms in different ways (e.g., slang usage of “sick”). Classifiers can

overcome the limitations of keyword filtering, but are time consuming to build, so they are

generally considered as a next step if keywords are insufficient. Topic models, on the other

hand, are most often used for exploratory purposes—understanding what the content looks

like at a high level—rather than looking for specific content.
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These techniques are not mutually exclusive, and it is not unreasonable to combine

all three. Let’s illustrate this with an example. Suppose you want to use social media to

learn how people are responding to the recent outbreak of Zika, a virus that can cause birth

defects and had been rare in recent years until a widespread outbreak in 2015 originating in

Brazil. (In fact, several researchers have done just that [Dredze et al., 2016c, Ghenai et al.,

2017, Juric et al., 2017, Miller et al., 2017, Muppalla et al., 2017, Stefanidis et al., 2017].)

You decide to study this on Twitter, which captures a large and broad population.

The first step is to collect tweets about Zika. There aren’t a lot of ways to refer to Zika

without using its name (or perhaps its Portuguese translation, Zica, or its viral abbreviation,

ZIKV). You might therefore start with a keyword filter for tweets containing “zika,” “zica,”

or “zikv,” which would account for a tiny fraction of Twitter, but probably nearly all tweets

about Zika, at least explicitly.

If you don’t already know what people discuss about Zika on Twitter (since it was

not widely discussed until recently, after the outbreak), you might use a topic model as a

starting point to identify the major themes of discussion in your dataset. After running and

analyzing a topic model, you might find that in the context of Zika, people use Twitter to

talk about the latest research, vaccine development, political and funding issues, pregnancy

and birth issues, and travel bans and advisories.

Suppose you are interested in using social monitoring to learn how people are changing

their behavior in response to the virus, so you decide to focus on topics related to pregnancy

and travel. To narrow down to tweets on these topics, you could construct a list of additional

keywords for filtering, maybe using the word associations learned by the topic model, or

using your own ideas about relevant words, perhaps gained by manually reading a sample of

tweets. Finally, if you need to identify tweets that can’t be captured with a simple keyword

list (for example, you want to identify when someone mentions that they are personally

changing travel plans, as opposed to more general discussion of travel advisories), then you

should label some of the filtered tweets for relevance to your task and train a classifier to

identify more such tweets.

Tools and resources

A number of free tools exist for the machine learning tasks described above, although most

require some programming experience. For a guide aimed at a public health audience rather

than computer scientists, see Yoon et al. [2013]. For computationally oriented researchers,

we recommend the following machine learning tools:

• scikit-learn (http://scikit-learn.org) is a Python library for a variety of general

purpose machine learning tasks, including classification and validation.

• MALLET (http://mallet.cs.umass.edu) is a Java library for machine learning

for text data, supporting document classification and topic modeling.
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• NLTK (http://www.nltk.org) is a Python library for text processing, supporting

tokenization and classification.

• Stanford Core NLP (https://stanfordnlp.github.io/CoreNLP/) is a set of nat-

ural language processing tools, including named entity recognition and dependency

parsing.

• HLTCOE Concrete (http://hltcoe.github.io/) is a data serialization standard

for NLP data that includes a variety of “concrete compliant” NLP tools.

• Twitter NLP (https://github.com/aritter/twitter_nlp) is a Python toolkit

that implements some core NLP tools with models specifically trained on Twitter

data.

• TweetNLP (http://www.cs.cmu.edu/~ark/TweetNLP/) is a toolkit implemented

in Java and Python of text processing tools specifically for Twitter.

• Weka (http://www.cs.waikato.ac.nz/ml/weka/) is a machine learning software

package that supports tasks like classification and clustering. It has a graphical inter-

face, making it more user-friendly than the other tools.

4.1.2 TREND INFERENCE

We will now describe methods for extracting trends—levels of interest or activity across time

intervals or geographic locations—from social media. First, we discuss how raw volumes of

filtered content can be converted to trends by normalizing the counts. Second, we describe

how filtered content can be used as predictors in more sophisticated statistical models

to produce trend estimates. Examples of these two approaches, as applied to influenza

surveillance, are contrasted in Figure 4.3.

Counting and normalization

A simple method for extracting trends is to compute the volume of data filtered for relevance

(Section 4.1.1) in each point (e.g., time period of location), for example the number of flu

tweets per week [Chew and Eysenbach, 2010, Lamb et al., 2013, Lampos and Cristianini,

2010].

It is important to normalize the volume counts to adjust for variation over time

and location. For example, the system of Lamb et al. [2013] normalizes influenza counts

by dividing the volumes by the counts of a random sample of public tweets for the same

location and time period. Normalization is especially important for comparing locations,

as volumes are affected by regional differences in population and social media usage, but

normalization is also important for comparing values across long time intervals, as usage

of a social media platform inevitably changes over time.
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Figure 4.3: Estimates of influenza prevalence derived from Twitter (blue) alongside the gold

standard CDC rate (black). The dashed Twitter trend is the normalized count of influenza-

related tweets, estimated with the method of Lamb et al. [2013]. The solid Twitter trend uses

the normalized counts in a regression model to predict the CDC’s rates. The regression approach

is based on research by Paul et al. [2014], in which an autoregressive model is trained on the

Twitter counts as well as the previous three weeks of CDC data. Predictions for each season

(segmented with vertical lines) are based on models trained on the remaining two seasons. The

regression predictions, which incorporate lagged CDC data, are a closer fit to the gold standard

curve than the counts alone.

Note that the search volume counts provided by Google Trends are already normal-

ized, though normalization is plot dependent, and values cannot be compared between plots

with establishing baselines for comparison. See Ayers et al. [2011b] for details.

Statistical modeling and regression

A more sophisticated approach to trend inference is to represent trends with statistical

models. When a model is used to predict values, it is called regression. Regression models

are used to fit data, such as social media volume, to “gold standard” values from an existing

surveillance system, such as the influenza-like illness network from the Centers for Disease

Control and Prevention (CDC).
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The simplest type of regression model is a univariate (one predictor) linear model,

which has the form: yi = b+ βxi, for each point i, where a point is a time period such as

week. For example, yi could be the CDC’s influenza prevalence at week i and xi could be

the volume of flu-related social media activity in the same week [Culotta, 2010, Ginsberg

et al., 2009]. The β value is the regression coefficient, interpreted as the slope of the line in

a linear model, while b is an intercept. By plugging social media counts into a regression

model, one can estimate the CDC’s values.

Other predictors can be included in regression models besides social media volume.

A useful predictor is the trend itself: the previous week’s value is a good predictor of the

current week, for example. A kth-order autoregressive (AR) model is a regression model

whose predictors are the previous k values. For example, a second-order autoregressive

model has the form yi = β1yi−1 + β2yi−2. If predictors are included in addition to the

time series data itself, such as the social media estimate xi, it is called an autoregressive

exogenous (ARX) model. ARX models have been shown to outperform basic regression

models for influenza prediction from social media [Achrekar et al., 2012, Paul et al., 2014].

A commonly used extension to the linear autoregressive model is the autoregressive

integrated moving average (ARIMA) model, which assumes an underlying smooth behavior

in the time series. These models have also been used for predicting influenza prevalence

[Broniatowski et al., 2015, Dugas et al., 2013, Preis and Moat, 2014].

Regression models can also be used for forecasting trends into the future. For exam-

ple, rather than training models to predict yi, one might train models to predict yi+k, which

corresponds to flu activity k weeks into the future, in the case of influenza surveillance.

4.1.3 INDIVIDUAL ANALYSIS

While trend prediction involves the modeling of populations through aggregate data, there

are some applications where it is appropriate to build models that describe attributes of

individuals.

One reason to use individual-level models is to make predictions about individuals,

for example, predicting whether a person will become sick with the flu [Sadilek et al.,

2012a,b] or predicting if a person is at risk for suicide [Thompson et al., 2014].

In addition to making predictions, individual-level models can also be used to analyze

the individuals, to learn what characteristics are predictive of an attribute. For example,

De Choudhury et al. [2014a] analyzed what types of Facebook activity are correlated with

depression. This approach is called regression analysis because regression models are

used to analyze and understand a fixed set of data, rather than to make estimates about

new data, as in Section 4.1.2. This is a standard methodology in public health, e.g., to learn

correlates of health outcomes, but in this case the data come from social media rather than

traditional means (e.g., surveys or medical records).
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Metric Definition Objective

Correlation 1
N

∑N
i=1(xi−x̄)(yi−ȳ)

σxσy
Maximize

Mean squared error 1
N

∑N
i=1(xi − yi)2 Minimize

Mean absolute error 1
N

∑N
i=1 |xi − yi| Minimize

Mean percentage error 1
N

∑N
i=1

|xi−yi|
yi

Minimize

Log-likelihood −
∑N
i=1(xi − yi)2 Maximize

Akaike IC 2K + 2
∑N
i=1(xi − yi)2 Minimize

Bayesian IC K logN + 2
∑N
i=1(xi − yi)2 Minimize

Table 4.1: Definitions of commonly used validation metrics, described in Section 4.1.4. We

assume the x values are predictions (e.g., by a social media system) and the y values are gold

standard. N is the number of data points and K is the number of free parameters in the

prediction model. For the correlation metric, σx denotes the standard deviation and x̄ denotes

the mean. For the last three metrics, it is assumed that the log-likelihood is of a Gaussian model,

as in linear regression.

In general, individual-level analysis with social media is less common than trend

analysis, in part because this type of data is harder to obtain.

4.1.4 VALIDATION

An important part of social monitoring is to evaluate the validity of the information ex-

tracted from social media. We now summarize common methods for validation and evalu-

ation.

Comparison to external data

When possible, one should validate social media systems by comparing to data from gold

standard surveillance systems, for example surveillance from the Centers for Disease Con-

trol and Prevention (CDC) in the United States. Most studies on social media influenza

surveillance in the U.S. compare to CDC data.

Different metrics exist for comparing social media trends to gold standard trends. Per-

haps the most commonly used metric for comparing two trends is the Pearson correlation

coefficient, which measures the degree to which two trends have a similar shape.

If trends exhibit autocorrelation, meaning that a trend has similar values at nearby

points in time or space, then the correlation between trends may be overstated, because

such trends are more likely to have similar shapes by chance. In time series data, one can

reduce autocorrelation by replacing the original value at each time point with the difference

between the value and the value of the previous time point. These modified values now

reflect the changes between consecutive points in time. This differencing procedure can
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be repeated multiple times until autocorrelation is removed, and then correlation can be

measured between the modified trends with differenced values [Box and Jenkins, 1990].

This approach was used to evaluate influenza prevalence in Broniatowski et al. [2013].

Correlation metrics are appropriate when the trends are on different scales. For ex-

ample, if a trend is produced using only counts on Twitter (Section 4.1.2), the values will

be very different from the values in CDC data, but we can still measure whether the values

rise and fall at the same time. In contrast, if trends are meant to be directly comparable to

external data, for example by plugging Twitter values into a regression model that predicts

the CDC data, then a more direct evaluation is to measure the error or difference between

the predicted values and the true values. A common error metric is mean squared error

(MSE), which is the average of the squared error at each point. Other error metrics include

mean absolute error (MAE) and mean absolute percentage error (MAPE), where the error

is normalized by dividing the absolute error at each point by the true value [Hyndman and

Koehler, 2006, Lazer et al., 2014b].

MSE and MAE are similar, but MSE is weighted more heavily toward large errors,

since the errors are squared. If a system makes small errors on average, but has some

very large errors, then those large errors will affect MSE more than MAE. This can be a

useful property if you care about having no or few large errors, even if that makes other

errors slightly worse. Percentage error with MAPE measures error relative to the size of

the value. For example, during the off-season of influenza, a small raw error might be very

large relative to the overall flu prevalence. A metric like MAPE may better capture the

performance in both low and high points of a season, while MAE and MSE may give more

weight to the larger errors made during high season.

Another category of metrics measures model fit—how well the model explains or

matches the data. Closely related to mean squared error is the log-likelihood of the true

values under the regression model. Akaike information criterion (AIC) [Akaike, 1974] is a

common metric that is based on log-likelihood, but adjusts the score to penalize models

with larger numbers of parameters, since more complex models may not generalize well

to future data (see below). Variants of AIC exist, such as Bayesian information criterion

(BIC) [Schwartz, 1978].

Table 4.1 summarizes the metrics described above and provides their mathematical

definitions.

In addition to comparing the entire trends, one might wish to evaluate specific char-

acteristics of a trend. For example, the CDC’s “Predict the Flu” competition [Biggerstaff

et al., 2016, Centers for Disease Control and Prevention, 2013] (described in Section 2.2.2)

evaluated trend predictions based on certain features of the influenza season: the week the

season starts, the week the season ends, the week the season peaks, and the prevalence at

the peak.
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Out-of-sample validation An important issue with validation is whether the metrics

described above are computed on in-sample data—the data that the model or algorithm

is estimated with, called training data in machine learning—or out-of-sample data, called

test data in machine learning, which is held-out data that the algorithm has never seen

before. Evaluating a system on in-sample data creates false confidence in model accuracy,

because a model that fits current data well may do a poor job of predicting data in the

future. A model that trivially memorizes the expected predicted values for the training data

has learned nothing about out-of-sample data. This issue is called over-fitting. While some

metrics, like AIC, try to correct for this, a more robust approach is to evaluate how well a

model predicts trends on data it has never seen before.

One method for creating test data is cross-validation, in which the data is par-

titioned into distinct subsets for training and testing, and the evaluation metrics from

different test subsets are averaged to produce a final score. K-fold cross-validation is when
1
K of the data are held-out for testing, and this process is repeated K times on different

held-out partitions. Common choices are 5-fold and 10-fold cross-validation, where 20%

and 10% of data are held-out for testing, respectively. Model fit metrics like AIC are typi-

cally applied to in-sample data, though AIC is asymptotically equivalent to leave-one-out

cross-validation, where only one instance is left as test data in each fold [Stone, 1977].

When evaluating time series trends, data can often be naturally partitioned into train

and test sets. For example, when evaluating influenza trends, one might train on earlier

seasons, and evaluate on the latest season available [Paul et al., 2014]. When only one

season of data is available, one might train on the first half and evaluate on the second

[Culotta, 2010].

Often, one needs to evaluate models not just to estimate performance, but also to

compare competing models or to tune parameters of a machine learning algorithm. In

such cases, the best practice is to use multiple sets of held-out data. One held-out set,

usually called the development set in machine learning, is used for comparing models

and tuning parameters, and models can be evaluated on development data multiple times

during research. Separately, a test set should be used for evaluation after all tuning and

model selection is done. This two-step process is used to avoid over-fitting by tuning models

to the evaluation data. Cross-validation can also be used for the development phase, with

a separate held-out test set used at the end of the process.

Added value of social media When evaluating trends from social media data, it is

important to compare to fair baselines that contextualize the gains made with social media.

For example, influenza surveillance research has found that simple autoregressive models

(Section 4.1.2) using only CDC data are often better than social media trends alone, though

combining both still leads to improvements [Goel et al., 2010, Lazer et al., 2014b, Paul et al.,

2014]. It is therefore a good practice to compare social media systems to systems using only

traditional surveillance, to fairly measure the value added by incorporating social media.
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Intrinsic evaluation of filtering quality

Another important type of evaluation is measuring the quality of the filtering step (Section

4.1.1). For example, if one is estimating influenza prevalence by filtering for flu-related

tweets, then it is important to know how many tweets identified by the filter (e.g., a machine

learning classifier) are actually relevant to influenza surveillance [Aramaki et al., 2011,

Lamb et al., 2013]. This type of evaluation is especially important for tasks that do not

have existing surveillance data to compare to.

Simply computing the accuracy of positive and negative classifications is usually not

appropriate for evaluating filtering, since often the labels are highly imbalanced: if 99% of

tweets are irrelevant, then a filter that labels all tweets as negative will have an accurate

of 99%, but this is a useless filter, since no relevant tweets will be identified.

Instead, one should use metrics that evaluate the classification of relevant instances in

particular. In psychology and some areas of public health this is often called “face validity”,

since it directly measures whether the classifier achieves its stated aims [Holden, 2010]. The

most common metrics used in machine learning are precision and recall. Precision (also

called positive predictive value) is the percentage of instances classified as positive that are

actually positive. Recall (also called true positive rate, sensitivity, or hit rate) is defined as

the percentage of positive instances that were correctly classified as positive. One can think

of precision as a type of accuracy, while recall is a measure of coverage. The two metrics

are often in competition: recall can be increased by classifying more instances as positive,

which may lower precision. The two scores are often summarized by the F1 score, which is

the harmonic mean of precision and recall.

A common alternative to precision and recall is the receiver operating character-

istic, also called an ROC curve, which is a curve that plots the true positive rate against

the false positive rate. The area under curve (AUC) metric is the area under the ROC

curve, used to summarize the curve with a concise metric. An AUC of 0.5 is equivalent to

random guessing (true positives and false positives are equally likely), while scores signifi-

cantly above this baseline show that the classifier is making meaningful predictions. While

AUC is a popular measure, Hand [2009] found that it is fundamentally incoherent in terms

of misclassification costs, and should be avoided.

These metrics require one to know the labels of the instances. If a supervised classifier

is being evaluated, then typically one will compute these metrics on the labeled data that

was used to train the classifier. If a supervised classifier is used, these evaluation metrics

should be computed on out-of-sample test data rather than the training data, for example

using cross-validation, as described in the previous subsection. If no data is used to train

the filter, such as with human-defined keyword filters or with unsupervised topic modeling,

then it is not necessary to evaluate on held-out data, but one will need to label a set of

instances in order to compute the evaluation metrics.
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For more discussion on evaluating systems for text data, we recommend Resnik and

Lin [2010].

4.2 QUALITATIVE ANALYSIS

Most social monitoring is quantitative, used to extract trends or to support predictive

modeling. Quantitative analyses typically rely on automated methods in order to process

large volumes of data.

Some studies, in contrast, rely on small-scale, manual analysis of data. We refer to

such analysis as qualitative, in which humans review and characterize raw data. Typically

data is annotated to characterize the data under a standard classification system. Anno-

tations are sometimes called labels (in the machine learning community) or codes (in the

medical community).

The goal of qualitative analysis is to understand the content of the social media

messages being analyzed, providing a richer understanding of the data than quantitative

methods, which provide only aggregate trends. For example, to support the understanding

of Twitter-based influenza research, Chew and Eysenbach [2010] and Nagar et al. [2014]

performed content analyses of tweets during influenza epidemics by labeled flu-related mes-

sages. Both of these studies additionally performed a quantitative analysis, using the an-

notated tweets to extract temporal trends. Research that combines qualitative and quanti-

tative methods is called mixed-methods research.

Other examples of qualitative analysis in social media include characterizing pain-

related tweets [Heaivilin et al., 2011], identifying complaints of medical mistakes in Twitter

[Nakhasi et al., 2012], and characterizing public responses to poor air quality in Chinese

social media [Wang et al., 2015b].

Such studies typically require an initial step of filtering for relevant content, using

techniques described in Section 4.1.1, rather than starting with a completely random sample

of content.

Annotations from qualitative data analysis can also be used to support machine

learning, by using the annotated data to train supervised classifiers (Section 4.1.1). For

example, Wang et al. [2015b] used annotations originally created for a qualitative study to

then train a supervised classifier to automatically identify more such messages.

Finally, we note that manual analysis can potentially be scaled up with the help of

crowdsourcing (Section 3.3.4), although crowd workers will generally not have expertise in

the subject area, so this approach is most often used to collect simple annotations that can

be straightforwardly described, rather than more complex analysis.

4.2.1 VALIDATION
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Evaluating qualitative analysis

Like with quantitative research, it is important to be able to characterize the validity

and reliability of qualitative analyses, though the methods differ. A general strategy with

qualitative research is to have multiple researchers separately perform the same analysis:

if multiple people independently arrive at the same conclusions after analyzing the data,

then this is evidence that the analysis is consistent.

This strategy is most often used when annotating data, where the quality of the an-

notations can be measured by how well the annotators agree on the labels. Data annotation

is typically conducted by two or more annotators who independently label the same data,

following guidelines describing the possible labels. Various metrics exist to measure the

agreement between annotators, such as Cohen’s kappa [Cohen, 1960] or the more general

Fleiss’ kappa [Fleiss, 1971]. For a survey and in-depth discussion of agreement metrics, see

Artstein and Poesio [2008].

Annotator agreement scores can be used to quantify the reliability of the annotations,

as well as to measure the difficulty of the annotation task, as difficult annotation tasks will

have lower agreement. Recognizing that a task is too difficult for annotators can suggest

that the task was not well defined and needs refinement, though it can also be a consequence

of data that is inherently ambiguous or difficult to interpret (for example, due to sarcasm).

Evaluating quantitative systems qualitatively

Qualitative analyses can also help with understanding the performance of quantitative sys-

tems. Tufekci [2014] recommends performing “qualitative pull-outs”—manually inspecting

small samples of the research data to check that it is being used and interpreted in the

intended way. For example, with influenza surveillance from tweets, a good practice would

be to periodically examine a sample of tweets that are being used by the system. Are the

tweets actually about an individual being sick (as intended), or is something else being cap-

tured, like retweets of a news article? Qualitative checks like these can identify problems

that might not be immediately apparent through quantitative metrics, and catching these

types of problems early can keep a system from making large errors later.

4.3 STUDY DESIGN

4.3.1 STUDY POPULATION

The first step to studying a population is to ensure you are studying the right population,

which means you need to know what population your data is drawn from. In practice,

this means ensuring that the data sample is representative of the target population for the

research question (or if it is not representative, to be able to characterize in what way it

is biased). Health behaviors and outcomes often vary significantly across different groups

of people, and research findings should be contextualized by the demographic groups they

apply to. This is especially important when studying health, since there are often large dis-
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parities in health behaviors and outcomes by population [Shonkoff et al., 2009]. Traditional

public health methods for data collection, such as surveys and clinical encounters, include

demographic information on the subjects. Demographic variables frequently include loca-

tion, gender, age, race, ethnicity, income, and can include a variety of categories depending

on the domain [Mislove et al., 2011].

Even though public health has a long tradition of using demographics in analyses,

there have been few studies that have done so with social media. Three recent examples

have started to show how this information can and should be utilized.

Coppersmith et al. [2015b] used gender- and age-matched controls in their broad

analysis of mental health disorders on Twitter. By using these controls, they were able to

account for other factors related to gender and age that may influence a person’s language in

relation to their mental state. They used similar controls when designing the CLPsych 2015

Shared Task on Depression and PTSD on Twitter [Coppersmith et al., 2015a]. Similarly,

Reis and Culotta [2015] used a matched control group based on various mental health

factors, such as depression and anxiety, to measure the effects of exercise on mental health

using Twitter. Finally, Weeg et al. [2015] correlated self-reported prevalence rates for 22

diseases with the number of times the diseases were mentioned on Twitter while correcting

for demographic bias in the U.S. Twitter population.

One reason there has been relatively little attention to demographics in social moni-

toring research is that social data often does not include explicit demographic information.

For example, Twitter profiles do not contain a field for a person’s age and gender; only

the user’s location is provided, and that is optional. However, progress has been made in

developing methods to automatically infer demographics of social media users, which can

potentially improve social monitoring.

Inferring demographic attributes

Researchers have turned to a variety of automated methods to infer user demographics

from their available data. We briefly summarize the most common approaches. For a more

detailed summary, see Volkova et al. [2015b].

The most common approach to demographic inference relies on supervised classifiers

trained on the message text of each user [Burger et al., 2011, Pennacchiotti and Popescu,

2011b, Rao and Yarowsky, 2010, Volkova et al., 2015a]. For example, all of a user’s posts

are collected into a single document, that is paired with the demographic trait of the user

and used for training data. These methods rely on both the topics discussed by a user, and

their language use [Rao et al., 2010, Schwartz et al., 2013], in identifying associated traits.

Another source of information about a user’s demographics comes from their social

network [Al Zamal et al., 2012, Bergsma et al., 2013]. The underlying assumption is that

users frequently talk to, or are friends with, users who share their demographic traits,

e.g. men talk to men, teenagers talk to teenagers, etc. This is known as homophily, the
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tendency of individuals to associate with others who share common bonds or characteristics

[McPherson et al., 2001]. In some cases, it may be more valuable to observe a user’s friend’s

comments than the user’s own comments [Volkova et al., 2014].

Self-identification can be a reliable source of demographic information. Many users

will self-identify in their profile or through explicit statements in content they author [Beller

et al., 2014]. Several studies have shown that a user’s profile name can be used as a fea-

ture in a demographics classifier [Bergsma et al., 2013, Chang et al., 2010, Knowles et al.,

2016, Liu and Ruths, 2013, Rao et al., 2011]. Similarly, the location of the user can in-

form demographics by relying on demographics and location information from Census data

[Mohammady and Culotta, 2014].

Finally, follower lists can be used to characterize the interests of a user, which

are indicative of their demographics. Culotta et al. [2015] combined existing demographic

follower information from popular websites (e.g., ESPN, Oprah) with follower lists to infer

Twitter user demographic attributes.

Throughout all of these approaches, the most commonly studied demographic cate-

gories are age [Nguyen et al., 2013, Pennacchiotti and Popescu, 2011b, Rao et al., 2010] and

gender [Alowibdi et al., 2013, Burger et al., 2011, Ciot et al., 2013], followed by race and

ethnicity [Bergsma et al., 2013, Pennacchiotti and Popescu, 2011b] and political preference

[Pennacchiotti and Popescu, 2011a, Volkova et al., 2014]. Others have considered personal-

ity [Quercia et al., 2011, Schwartz et al., 2013], occupation [Sloan et al., 2015], and income

level and education [Volkova et al., 2015b].

A separate line of research has studied demographic identification in search queries

[Bi et al., 2013], which shares some commonalities with these tasks in social media, but has

received less attention due to the restrictions on obtaining search query data grouped by

user.

Several research groups have made demographic classification tools and datasets avail-

able, mostly for Twitter:

• The World Wide Well Being Project hosts several lexica and other resources:

http://www.wwbp.org/data.html

• Volkova et al. [2015b] provide data and code to accompany their tutorial:

http://www.cs.jhu.edu/~svitlana/

• Culotta et al. [2015] provide code and data for their system:

https://github.com/tapilab/aaai-2015-demographics

• LexHub hosts tools and datasets for language analysis in the social sciences:

http://lexhub.org/

• Demographer [Knowles et al., 2016] infers demographics from names of Twitter users:

https://bitbucket.org/mdredze/demographer

PREPRINT



4.3. STUDY DESIGN 43

Geolocation

Traditional demographics include location, which is provided more consistently in social

media than other demographic characteristics. Platforms like Twitter and Facebook allow

users to provide a specific set of coordinates with a message, or tag a place (e.g. a point of

interest or city).

Unfortunately, this type of location data is rare; only a small percentage of tweets

contain coordinates. For example, roughly 1–3% of Twitter messages are geocoded. To

increase the amount of geolocated data, researchers have developed a range of methods

for automatically inferring location from available user data [Han et al., 2014]. We briefly

summarize the most common approaches.

The most straightforward method for determining location relies on user biographic

information. In many social media platforms, users have “profiles”, which can include self-

reported locations. Locations may be structured or unstructured. Twitter, for example,

allows free-form text in the profile, so users provide locations such as “NYC” or “Baltimore,

MD”. A challenge with this type of data is resolving different mentions of the same location,

such as “NYC” and “New York City”, as well as detecting fake locations such as “Candy

Land” [Graham et al., 2014, Hecht et al., 2011]. One approach is to create alias dictionaries

[Bergsma et al., 2013] that resolve location mentions to structured locations [Dredze et al.,

2013]. Kiciman et al. [2014] used geo-tagged data to learn to map profile strings to specific

locations.

When users do not explicitly provide their location, it can sometimes be inferred from

the textual content that users share [Eisenstein et al., 2010, Roller et al., 2012, Wing and

Baldridge, 2014, 2011]. This can be done using cues such as linguistic dialects, mentions

of geographic features or names of landmarks, and mentions of other local entities such as

sports teams. Such approaches are prone to error and may require many messages from

users to make accurate inferences. Additionally, the social network itself can indicate

geolocation [Rahimi et al., 2015a,b] as users are more likely to communicate with other

users in the same geographic area [Bergsma et al., 2013].

Geolocation can focus on the user or the specific message. Most research considers the

task of user (author) geolocation, the identification of an author’s primary (home) location

[Cha et al., 2015, Compton et al., 2014, Eisenstein et al., 2010, Han et al., 2014, Jurgens

et al., 2015, Rout et al., 2013]. This may be defined as the primary area from where a person

tweets, or their home location (where they reside at night). User geolocation systems rely

on multiple tweets from each user to identify the location.

The task of tweet geolocation requires the identification of the location where a single

tweet was written [Dredze et al., 2013, 2016a, Osborne et al., 2014]. This approach is

necessary when geolocation decisions must be made quickly, with limited resources, or

when the location of a specific tweet is required. For example, when analyzing a corpus of
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millions of tweets from millions of users, it may not be feasible to collect a large sample of

tweets from each user for user geolocation.

For some platforms—primarily search and browsing logs—the location can be esti-

mated from the IP address of the user. This can provide a location when no information

is provided by the user, but IP address-based geolocation is unreliable [Poese et al., 2011].

The efficacy of these methods vary based on platform, and geographic granularity.

Overall, they can provide an order of magnitude increase in the number of geocoded mes-

sages [Dredze et al., 2013].

As with demographics, a number of tools exist for Twitter geolocation:

• Carmen [Dredze et al., 2013] is a Python library that uses a combination of geoco-

ordinates and profile information to provide a structured location for a given tweet:

https://github.com/mdredze/carmen-python. An older Java version is also avail-

able: https://github.com/mdredze/carmen

• The Discussion Graph Tool from Microsoft Research implements the location method

from Kiciman et al. [2014]: http://research.microsoft.com/dgt/

• Twofishes is a geocoder that translates strings to coordinates: https://github.com/

foursquare/fsqio/tree/master/src/jvm/io/fsq/twofishes

• pigeo [Rahimi et al., 2016] is a Python tool that predicts the geolocation for a given

text input or Twitter user: https://github.com/afshinrahimi/pigeo

• TextGrounder [Speriosu et al., 2010] anchors natural language expressions to spe-

cific regions of the Earth based on a region-topic model that infers word distribu-

tions for each region discussed in a given corpus. https://github.com/utcompling/

textgrounder

4.3.2 CAUSALITY

A study’s conclusions may be causal or merely correlational. Consider the public health

example of marijuana legalization. Suppose it was found that states that legalized mari-

juana have seen increases in marijuana use since legalization. This alone is a correlational

relationship between legalization and use. A causal claim might be that marijuana legal-

ization leads to more marijuana use, but perhaps marijuana use would have increased in

those states even if it had not been legalized, because it was already gaining in popularity

(which led votes to support legalization). To make such a claim, the study would need to

be designed in a way to provide stronger evidence of causality.

Most social media research is correlational. Because social data is usually pas-

sively monitored—that is, the data is generated organically, without direction from the

researchers—the usual ways of designing experiments to determine causality do not apply.

The gold standard for experimentation is a randomized controlled trial, in which subjects
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are randomly assigned to a “treatment” group that receives whatever we want to measure

the effect of, versus a control group that does not. There are many problems for which it is

impractical or impossible to create a randomized controlled trial—we can’t randomly assign

people to live in states that did or did not legalize marijuana, for example. In practice, most

social media studies are observational.

Various techniques exist to infer causality even with observational data that is pas-

sively collected, including techniques that attempt to simulate the assignment to treatment

and control groups. Matching techniques create treatment and control groups by collecting

data from pairs or strata of subjects that did and did not receive the “treatment” but

are otherwise similar in some way. Continuing with the example of marijuana legalization,

one might construct a control group by choosing states that did not legalize marijuana

but are otherwise as similar as possible to the ones that did—for example, with similar

demographics and similar levels of marijuana use prior to legalization. A few studies have

used matching in social media research [Cheng et al., 2015, Pavalanathan and Eisenstein,

2016, Reis and Culotta, 2015].

One general purpose matching technique, propensity score matching [Rosenbaum and

Rubin, 1985], has been widely studied (see Austin [2011] for a survey and tutorial) and

found to be effective when applied to online data [Paul, 2017]. This type of matching

builds a probability model of the propensity of a subject to receive treatment or not—for

example, the probability that a state will legalize marijuana based on its characteristics—

and subjects with similar propensities are matched. Two recent studies used propensity

score matching to study health in social media. Rehman et al. [2016] measured how one’s

exposure to public health information affected sentiment toward vaccination, as expressed

in Twitter. De Choudhury and Kiciman [2017] measured how types of social support in a

Reddit community affected ones future risk of suicidal ideation.

4.3.3 CROSS-SECTIONAL VERSUS LONGITUDINAL ANALYSIS

A common distinction in observational studies is whether the data is cross-sectional or

longitudinal. The difference is perhaps easiest to explain with an example. Suppose you

want to estimate the prevalence of influenza over time, measured in weekly intervals, and

you do so by sampling 1000 people and determining their illness status. The cross-sectional

approach would sample a new set of 1000 people each week, where each week’s data would

be considered a different cross section of the population. The longitudinal approach would

sample 1000 people once, and track them each week. That is, cross-sectional data captures

a slice of the study population at a particular point in time (perhaps repeatedly), while

longitudinal data makes multiple observations over time from the same population.

In social media, cross-sectional data is easier to obtain, and is generally suitable for

tasks like population-level health surveillance, while longitudinal data is generally needed

for performing individual-level analyses, or for inferring causality as discussed above. Longi-
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tudinal data is used for tasks like measuring how one’s long-term behavior has affected their

health, or how one’s sentiment or awareness has changed over time. Most studies with so-

cial media are cross-sectional, though some studies have collected longer-term data on users

to understand changes in mental state [De Choudhury and Kiciman, 2017, De Choudhury

et al., 2016b], progression in behavior like drinking [Liu et al., 2017], and understanding

transitions in phases of illnesses [Paul et al., 2015b, Sidana et al., 2016].

The choice of platform affects which type of data can be collected. With Google

Trends, longitudinal data is not available, since only aggregate statistics are released in

order to preserve privacy. With Twitter, the streaming API will give a sample that will

not include the same population over time. However, Twitter does provide APIs to collect

historical tweets from a given user, so one could construct a longitudinal dataset of certain

users. The API has limits on how many tweets can be collected per user (the most recent

3,200) and how many users can be downloaded (900 per 15 minutes, at the time of writing),2

so datasets constructed in this way may be incomplete and smaller than what can be

collected with the streaming API. Alternatively, the streaming API allows for collecting all

tweets from a set of users in real-time. The most natural platforms for longitudinal data

are online communities and discussion forums, where the entire history is publicly available

and small enough to download, and where many users actively contribute over time.

2https://dev.twitter.com/rest/public/rate-limits
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C H A P T E R 5

Public Health Applications

We now turn to what can be learned about public health from social data. The wide breadth

of areas that have been explored reflects the diverse topics covered by social data, and the

widespread interest in these uses across public health. This includes monitoring of dis-

eases, both acute and chronic; health-related behaviors, including diet, substance use, and

vaccination; environmental factors, including natural disasters and air quality; healthcare

quality and safety, including the monitoring of medication side effects; and mental health.

In summarizing the major threads of research in social monitoring for public health,

we will show what can be done, rather than going into detail on how a study was done

or what was learned. Think of this chapter as a buffet, where the reader can learn a little

bit about several topics, rather than focusing in depth on specific studies. The chapter is

organized into five main sections covering broad areas of public health, with each section

providing an introduction to the area and its importance to public health, followed by a

summary of social media research in that area.

We begin each section by framing the problem. What are the goals of each area

of public health? What data is needed to support these goals? How is the data typically

collected, and what data gaps exist? We then turn toward social data and describe how

new research offers a data solution to these problems.

On the next page, you will find a table that summarizes the many different applica-

tions that will be explored in this chapter.
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Section Application Summary of social monitoring uses

5.1.1 Influenza surveillance Tracking seasonal influenza trends, early detection,
forecasting, understanding transmission patterns

5.1.2 Other infectious diseases Tracking the spread of diseases like dengue and West
Nile, and awareness of diseases like ebola and Zika

5.1.3 Chronic disease Tracking geographic patterns in chronic illness, un-
derstanding disease progression, discovering corre-
lates of disease

5.2.1 Diet and fitness Understanding dietary and fitness patterns in dif-
ferent populations, discovering dietary correlates of
health outcomes

5.2.2 Substance use Measuring prevalence of and attitudes toward differ-
ent substances including tobacco and e-cigarettes, al-
cohol, and other drugs including prescription drugs

5.2.3 Prevention & awareness Understanding vaccine behaviors and attitudes (in-
cluding anti-vaccination sentiment), measuring pub-
lic awareness of different diseases and public reactions
to health guidelines

5.3.1 Disasters and emergencies Using social data for situational awareness during
emergencies such as natural disasters, understanding
population behaviors during disasters

5.3.2 Foodborne illness Identifying cases of foodborne illness through reports
on social media including restaurant reviews

5.3.3 Air quality Measuring public perceptions of air quality, particu-
larly in urban areas with high pollution

5.3.4 Climate change Understanding people’s awareness of and response to
climate data

5.3.5 Gun violence Identifying new instances of gun violence, which is
not systematically documented in the U.S.

5.4.1 Healthcare quality Measuring perceptions and estimating quality of
healthcare clinics based on social media reports and
reviews of doctors

5.4.2 Medication safety Detecting drug and medication side effects reported
by people online

5.5.1 Depression Discovering indicators of depression, understanding
and predicting depressive episodes, including postpar-
tum depression

5.5.2 Suicide Understanding suicide risk factors, detecting in-
stances of suicidal ideation

5.5.3 Mood Inferring emotional states of online users

5.5.4 Other mental illnesses Understanding patterns in mental illnesses including
post-traumatic stress disorder (PTSD), eating disor-
ders, addiction, and schizophrenia

Table 5.1: An overview of the social monitoring applications described in this chapter.
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5.1 DISEASE SURVEILLANCE

One of the major tasks of public health is surveillance: the continuous, systematic collec-

tion, analysis, and interpretation of health-related data. Public health activities rely on

surveillance data to plan and implement interventions, and to evaluate the effectiveness

of interventions. A common type of surveillance, syndromic surveillance, tracks symptom

data from a population to identify and monitor early outbreaks of a disease. This type of

surveillance includes identifying outbreaks of rare diseases, which may mandate reporting

to a public health agency, or tracking infection rates of common diseases, such as seasonal

influenza.

Disease surveillance requires a sophisticated, widespread network of sentinel sites to

track infections throughout the population. These networks are time and labor intensive to

build and maintain, requiring a significant investment of resources.

Consider the example of influenza surveillance in the United States as run by the Cen-

ters for Disease Control and Prevention (CDC). The CDC uses five different surveillance

networks to track influenza-related activity in the United States. Perhaps the most well-

known surveillance network is ILINet: the U.S. Outpatient Influenza-Like Illness Surveil-

lance Network, which covers 36 million patient visit each year. ILINet encompasses 2,800

outpatient healthcare providers in all 50 states, as well as Washington D.C., Puerto Rico,

and the U.S. Virgin Islands. You can learn more about ILINet on the CDC’s website:

https://www.cdc.gov/flu/weekly/overview.htm.

On a weekly basis, these healthcare centers report the total number of patients seen,

and the number of patients that presented with influenza-like illness (ILI). ILI includes

patients who have the symptoms of a flu infection, but no other cause is identified. Note

that these patients have not necessarily confirmed the infection through laboratory testing,

hence influenza-like illness. This distinguishes syndromic surveillance from other types of

surveillance: the diagnosis is not confirmed, but the symptoms are sufficiently indicative of

the disease that they are useful for early detection.

These statistics are aggregated and released on a weekly basis as part of the CDC

FluView program, which provides estimates of the influenza rate nationally as well as in ten

regions of the United States as defined by the Department of Health and Human Services.

FluView estimates are used by the CDC, as well as state and local health agencies to

make decisions about influenza response, such as advertising vaccination programs, alerting

hospitals to increase staffing and bed availability, and closing schools if outbreaks become

severe [Dugas et al., 2012].

ILINet is an excellent program and does a good job of covering the United States

on the whole. However, even this comprehensive program leaves a lot of information gaps.

Not every provider reports on time, or at all, so coverage gaps can emerge. While coverage

is sufficient to provide national and regional numbers, they are not sufficient to provide

all state and local jurisdictions with complete pictures of flu activity in their area. For
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Figure 5.1: A screenshot of the Google Flu Trends system.

this reason, many areas run their own surveillance systems. Collecting and aggregating

thousands of provider reports takes time, which results in a delay of 1-2 weeks in reporting.

This delay can be costly when reacting to a large outbreak.

Despite being a strong surveillance system, the gaps in data are limiting. This explains

some of the excitement in Google Flu Trends, which promised to help fill in some data gaps,

providing early reports and potentially covering finer-grained geographic areas. This is also

why there have been so many studies using a variety of social data sources—search queries,

Twitter posts, Wikipedia page views—to track influenza.

Most work on disease surveillance using social media has focused on infectious dis-

eases, especially influenza-like illness. A systematic literature review of social media-based

disease surveillance found 15 articles about influenza-like illness, 6 about other infectious

diseases, and 4 about non-infectious diseases [Charles-Smith et al., 2015], though we will

describe many more articles not included in this review.

5.1.1 INFLUENZA

Most digital disease surveillance systems have been for influenza, which is a widespread

seasonal virus.

The earliest digital influenza surveillance systems used search query data. The

use of search query volume as an indicator of influenza prevalence was first demonstrated

by Eysenbach [2006], who referred to this approach as “infodemiology.” This study was

conducted before search trend data was publicly available. To obtain query volumes, Ey-

senbach purchased Google advertisements for the search queries “flu” and “flu symptoms,”

and the advertisement tracking system provided statistics about the traffic to those queries.

This study found search traffic to be correlated with government surveillance data. Later,
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Polgreen et al. [2008] demonstrated that search query data from Yahoo could be correlated

with influenza prevalence.

In 2008, Google launched Google Flu Trends (GFT) (shown in Figure 5.1), which

is perhaps the best-known digital disease surveillance system [Ginsberg et al., 2009]. The

original GFT model used a simple univariate regression model (Section 4.1.2) using volumes

averaged from several hand-selected queries. However, GFT has been criticized for poor

predictive performance, first for underestimating the prevalence of swine flu in 2009-2010,

and then for greatly overstating the flu prevalence during the 2012-2013 season [Lazer et al.,

2014b, Santillana et al., 2014b]. Google has updated their model multiple times in response

to these shortcomings [Cook et al., 2011, Copeland et al., 2013, Stefansen, 2015], and

external researchers outside of Google have developed their own flu models using publicly

available search data from Google Trends [Preis and Moat, 2014, Santillana et al., 2014b,

Wang et al., 2015c, Xu et al., 2010, Yang et al., 2015, Yuan et al., 2013]. As of August 2015,

Google no longer publicly posts new Flu trends but continues to share historical data. New

trends are shared directly with research teams on request [Google Flu Trends, 2015].

Beyond search, many researchers have used data from Twitter to monitor influenza.

Several researchers first published Twitter-based studies shortly after Google Flu Trends

was released [Chew and Eysenbach, 2010, Culotta, 2010, de Quincey and Kostkova, 2010,

Lampos and Cristianini, 2010, Signorini et al., 2011]. Later research used more sophisti-

cated models, including with machine learning and natural language processing, to improve

Twitter-based estimation [Achrekar et al., 2012, Aramaki et al., 2011, Doan et al., 2012,

Lamb et al., 2013, Lampos and Cristianini, 2012, Lampos et al., 2017, Li and Cardie, 2013,

SUN et al., 2016, Velardi et al., 2014].

Other web sources have been considered as well, including blogs [Corley et al., 2010]

and Wikipedia visits [Generous et al., 2014, McIver and Brownstein, 2014, Priedhorsky

et al., 2017]. Nsoesie et al. [2014a] showed that influenza can be estimated by analyzing

cancellations of restaurant reservations through OpenTable.

Which data source is best? A comparison of Google, Twitter, and Wikipedia during

the 2012-2015 influenza seasons found Google to have the highest sensitivity and positive

predictive value, followed by Twitter and then Wikipedia [Sharpe et al., 2016]. Research

has also shown that better influenza predictions can be obtained by combining signals

from multiple web sources [Santillana et al., 2015]. Yang et al. [2017] combined electronic

health records with Google Trends data, and Won et al. [2017] combined Google Trends

data with a phone survey system.

The majority of influenza research with social media has focused on surveillance

in the United States, but some research has conducted surveillance in other countries,

including the United Kingdom [Doan et al., 2012, Lampos and Cristianini, 2010, Szomszor

et al., 2012], Japan [Aramaki et al., 2011], South Korea [Shin et al., 2016], China [Feng

and Hossain, 2016, Li and Hu, 2016, Sun et al., 2014, 2017, Yuan et al., 2013, Zhang
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et al., 2014a], and Portugal and Spain [Prieto et al., 2014]. Paul et al. [2015a] evaluated the

Twitter surveillance in ten English-speaking countries, including Australia, New Zealand,

and South Africa, finding worse performance outside of North America. Pollett et al. [2017]

evaluated Google Flu Trends in several Latin American countries, finding good performance

in Mexico but poor performance in many South American countries.

Some research has evaluated surveillance in fine-grained locations, including New

York City [Broniatowski et al., 2013, Nagar et al., 2014, Sadilek et al., 2012b] and Hong

Kong [Xu et al., 2017]; hospital-level surveillance in Baltimore, Maryland [Broniatowski

et al., 2015] and Omaha, Nebraska [Araz et al., 2014]; and mass gatherings such as music

festivals [Yom-Tov et al., 2014a].

Beyond estimating current prevalence, some researchers have incorporated social data

into forecasting models, using data from Google Flu Trends [Dugas et al., 2013, Nsoesie

et al., 2013, Shaman et al., 2013] and Twitter [Iso et al., 2016, Paul et al., 2014]. Influenza

forecasting with social data was the subject of the CDC’s “Predict the Flu” contest de-

scribed in Section 2.2.2 [Biggerstaff et al., 2016].

An important component of influenza forecasting is modeling the spread of disease.

Sadilek et al. [2012a,b] modeled the spread of influenza using Twitter by looking at social

interactions and location proximity. Yom-Tov et al. [2015] showed how Twitter data can

be used to estimate parameters of influenza transmission dynamics, namely the secondary

attack rate and serial interval. Zhang et al. [2017] also used social media data to estimate

parameters of a disease transmission model. Dredze et al. [2016b] and Hawelka et al. [2014]

derived global travel data from geolocated tweets, which can be used to forecast the global

spread of an infection [Bogoch et al., 2016].

5.1.2 OTHER INFECTIOUS DISEASES

Other infectious diseases have been successfully tracked with social monitoring, albeit to a

lesser extent than influenza.

A prominent target of disease surveillance is dengue fever, a flu-like illness in tropical

climates, which researchers have tracked using search query volume [Althouse et al., 2011,

Chan et al., 2011, Li et al., 2017]. Google Dengue Trends, a spinoff of Google Flu Trends,

was developed to estimate dengue prevalence in tropical countries [Gluskin et al., 2014].

Dengue fever has also been examined in Twitter [Gomide et al., 2011].

Other surveillance research includes monitoring Lyme disease through search vol-

ume [Seifter et al., 2010], cholera through tweets and news media [Chunara et al., 2012],

norovirus (search) [Desai et al., 2012], E. coli (tweets) [Diaz-Aviles and Stewart, 2012],

malaria (search) [Ocampo et al., 2013], and bubonic plague (tweets) [Da’ar et al., 2016].

Zou et al. [2016] used social media for surveillance of infectious intestinal disease, and Deiner

et al. [2016] used search and social media data to analyze the seasonality of conjunctivitis

(pink eye).
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Research has also examined the utility of social media for surveillance of the 2014

ebola virus outbreak in West Africa [Odlum, 2015b,c, Odlum and Yoon, 2015], although

some research has cast doubt on whether social data would have had utility for detecting

this outbreak [Yom-Tov, 2015]. While social data may have been limited for surveillance of

disease incidence of ebola, a number of researchers have looked at social media to measure

public perceptions of the ebola outbreak [Fung et al., 2014, Lazard et al., 2015, Odlum,

2015a, Rodriguez-Morales et al., 2015, Towers et al., 2015].

Similar research has looked at the 2015 Zika virus outbreak in the Americas through

social media [Juric et al., 2017, Muppalla et al., 2017]. Multiple studies conducted content

analyses of Twitter to understand what is being said about Zika and by whom, to under-

stand public awareness and responses to the outbreak [Miller et al., 2017, Stefanidis et al.,

2017]. McGough et al. [2017] used data including search, social media, and news media to

forecast Zika.

Resources such as Google Trends and Wikipedia visit logs make it easy to look for

trends for a variety of diseases. Some studies have investigated multiple diseases at once,

using search volume data [Carneiro and Mylonakis, 2009, Pelat et al., 2009] and Wikipedia

browsing data [Generous et al., 2014, Priedhorsky et al., 2017]. These studies analyzed

trends for West Nile virus, gastroenteritis, chickenpox, HIV, plague, and tuberculosis, in

addition to other diseases already discussed. In perhaps the broadest study, Milinovich

et al. [2014] analyzed search volumes related to 64 infectious diseases, finding significant

correlations with official monitoring systems for 17 of the diseases.

5.1.3 NON-INFECTIOUS DISEASES AND CHRONIC ILLNESS

While most disease surveillance systems have focused on acute, infectious diseases, there

has been some work on social media analysis of chronic conditions.

A number of studies have analyzed search activities related to cancer in search engine

logs, with the goal of inferring and understanding events and needs experienced by cancer

patients [Bader and Theofanos, 2003, Ofran et al., 2012, Paul et al., 2015b, 2016b]. Similar

research analyzed patient needs over time in cancer forums [Eschler et al., 2015]. Research

with search logs has even shown that cancer can potentially be detected early based on

symptoms that people search. Paparrizos et al. [2016a,b] classified diagnoses of pancreatic

cancer using search query logs before the date of diagnosis, and found that the classifier

could “identify 5% to 15% of cases, while preserving extremely low false-positive rates

(0.00001 to 0.0001).”

Researchers have also examined discussions of pain in social media [Tighe et al.,

2015], including dental pain [Ahlwardt et al., 2014, Heaivilin et al., 2011], back pain [Lee

et al., 2016], and migraine headaches [Nascimento et al., 2014].

A variety of both acute and chronic illnesses were examined in Twitter by Yin et al.

[2015], including cancer, hypertension, and asthma. Ram et al. [2015] found that tweets
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and search data can be used to predict asthma-related emergency department visits. Other

research has also estimated asthma rates from Twitter data [Dai et al., 2017, Zhang et al.,

2016]. Social media has also been analyzed to understand chronic diseases that require

regular management, including diabetes [Liu et al., 2016] and human immunodeficiency

virus (HIV) [Jin et al., 2016, Young et al., 2014, Young and Wang, 2017].

Others have used social media to infer indirect measures of chronic conditions, look-

ing for correlates of the conditions rather than the conditions directly. For example, Fried

et al. [2014] found that tweets related to dietary patterns are correlated with rates of

diabetes, Gore et al. [2015] found that tweets about nutrition and fitness are predictive

of obesity, and Eichstaedt et al. [2015] found that tweets describing stress and emotional

states are correlated with rates of heart disease. Culotta [2014] investigated 27 health-

related statistics in U.S. counties, finding significant correlations with tweets for six of the

health conditions.

Social data has also been used to test unanswered hypotheses about various ill-

nesses. For example, Milojevi [2016] used Twitter to test a hypothesis that solar eruptions

and geomagnetic storms are triggers of migraine headaches. This is an example of a hy-

pothesis that could not feasibly be tested with traditional data, while Twitter affords the

ability measure migraine incidence at the temporal granularity necessary to align with

solar eruptions. This study, however, found no association between these two activities.

Delir Haghighi et al. [2017] used Twitter reports to understand how changes in weather

affect people with fibromyalgia. Moccia et al. [2016] and Simpson et al. [2016] used Google

Trends and Twitter, respectively, to provide new evidence that multiple sclerosis has sea-

sonal patterns.

5.1.4 SYSTEMS AND RESOURCES

A number of disease surveillance systems make their data publicly available for others to

use. We list some of these systems here. See Brownstein et al. [2009] for a list of other

resources.

• HealthMap.org tracks news articles related to recent disease epidemics, providing

a geographic visualization to monitor diseases around the world.

• HealthTweets.org makes Twitter trend data available over time and location

[Dredze et al., 2014]. By default, the website provides influenza estimates from the

system of Broniatowski et al. [2013], Lamb et al. [2013]. Other trends are possible

upon request.

• Google Flu Trends makes available their data in the form of weekly influenza

predictions as well as dengue predictions.1 As of August 2015, the service is no longer

operational, but historical data is still available.

1https://www.google.org/flutrends/
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• EpiCaster is a web-based application for assessing and forecasting disease epidemics,

such as influenza and ebola [Deodhar et al., 2015a].2 It visualizes data from traditional

sources as well as web-based sources including Google Flu Trends. A similar system,

FluCaster, focuses on flu [Deodhar et al., 2015b].3

• FluTrack.org provides data and visualizations of flu-related tweets [Chorianopoulos

and Talvis, 2016].

• The Columbia Real-Time Infectious Disease Forecasts provides weekly ILI

forecasts based on CDC and Google data: http://cpid.iri.columbia.edu/

• The Now Trending competition’s winning entry shares ongoing statistics about

health-related Twitter data: https://nowtrending.hhs.gov/.

5.2 BEHAVIORAL MEDICINE

Human behavior drives many aspects of health. What did you eat for breakfast today?

How much alcohol did you drink? Did you get this year’s flu shot? All of these are choices

individuals make that can have a direct impact on a person’s health. These decisions all

come together under the broad category of behavioral medicine.

Behavioral medicine combines a wide range of disciplines to study how people make

choices about their health and how these choices affect a person’s health and wellbeing.

The areas of health covered by behavioral medicine are diverse, because our behavior can

have a wide range of effects on health: diet and exercise, substance use, and vaccination, to

give a few examples. Behavioral medicine also encompasses many disciplines since human

behavior touches many fields of study: epidemiology, psychology, sociology, and nutrition,

just to name a few.

The key challenge to collecting data relevant to the study of behavioral medicine

topics is that these behaviors take place outside of the doctor’s office. While doctors can

diagnose an illness, they rely on the self-reports of patients to understand what behaviors

may have contributed to the illness.

A myriad of problems arise when relying on this type of information collection. While

some people visit a physician when they have a medical issue or for a regular checkup, many

do not, and many of the health issues that arise from a behavioral decision may not trigger

an office visit, e.g., addiction. If someone does see a physician, we cannot expect a doctor

to solicit a wide range of information about health behaviors. A doctor is likely to ask

“do you smoke?” but not what types of products or what factors are the greatest barriers

to quitting. Even to simple questions like “do you smoke?” a person may not provide an

accurate answer. Maybe they do not want to admit that they are a smoker, or they think

2http://socialeyes.vbi.vt.edu/epicaster/epicaster.html
3http://ndssl.vbi.vt.edu/apps/flucaster/
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that a few cigarettes every week does not qualify them as a smoker. Self-reports can be

notoriously unreliable [Fisher and Katz, 2000]. Finally, even if doctors are able to collect

accurate information on these topics, we lack mechanisms for collecting and aggregating

this information. ILINet described in the previous section is a massive undertaking and

only collects a small number of data points per provider. Expanding this type of program

to include a wider range of health information would be exceedingly difficult and costly.

If not from doctor visits, where does data on behavioral medicine come from? Pop-

ulation surveys provide the primary source of information. For many important areas of

behavioral medicine, the government runs large-scale national surveys on a regular basis.

Surveys can focus on the questions directly relevant to the behavioral topic, and reach a

population inaccessible by working through providers. We’ve discussed before (Section 2.2)

some of the drawbacks of telephone surveys in terms of reliability and population coverage.

We’ll outline two examples of large surveys critical to understanding population health

behaviors in the United States.

The Behavioral Risk Factor Surveillance System (BRFSS) is the largest tele-

phone survey of the United States population focused on health-related behaviors. BRFSS

collects data from all 50 states, Washington, D.C., and three U.S. territories. In total, the

survey reaches more than 400,000 adults every year and is the primary source of information

on a large number of health behaviors, including smoking, obesity, and access to healthcare

services.4

A survey of this size is not cheap. BRFSS had $18 million in funding in 2015.5 Even

with this level of funding, the survey does not include all questions of interest, as adding

a single new question can be expensive. This means that while BRFSS yields a wealth of

data each year, there are still data gaps that cannot be addressed by the current survey.6 7

For example, the survey cannot reach homes without telephones, which means that people

residing in nursing homes are excluded. Self-reports are notoriously unreliable for some

types of behavioral questions, such as self-reports of heights and weights [Cameron and

Evers, 1990]. Additionally, BRFSS is organized by the CDC but run by individual states,

which can vary their survey methods, making comparisons across states challenging.

The National Survey on Drug Use and Health (NSDUH) is another example of

a large, national U.S. survey of health-related behaviors, in this case on the use of tobacco,

alcohol, illicit drugs, and mental health.8 NSDUH involves in-person interviews of tens of

thousands of individuals about their use of a wide range of substances. If you ever take

4https://www.cdc.gov/brfss/index.html
5https://www.cdc.gov/chronicdisease/resources/publications/aag/brfss.htm
6https://www.ahrq.gov/professionals/quality-patient-safety/quality-resources/tools/asthmaqual/

asthmacare/appendix-e.html
7https://www.cdc.gov/diabetes/statistics/comp/methods.htm
8https://nsduhweb.rti.org/respweb/homepage.cfm
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the survey (and one of the authors of this book has) you’ll discover that it’s extremely

extensive, covering almost every kind of drug you can imagine. The data is a primary

information source for both federal and state health agencies in making decisions about

treatment facilities, addiction programs, and prevention efforts.

While NSDUH aims to track the prevalence and emergence of new illicit drugs, it

faces the same challenges of all surveys; it must limit what is asked, and how often it can

be asked. This means that NSDUH often misses important trends. Bath salts, synthetic

stimulants that rose to prominence in the mid-to-late 2000s [Baumann, 2014], were at first

unnoticed by the addiction community. It took years before bath salts were included in

large national surveys, meaning that the community faced a multi-year gap in critical data

on this emerging trend.

Similar problems face the current opioid crisis. While deaths from heroin use have

skyrocketed in the past decade, NSDUH fails to show a similar increase in the use of

such drugs [Casteel, 2017]. Why this gap? Is it because available drugs have dramatically

increased in potency, and therefore lethality? Or are heroin users not reporting their use

in NSDUH interviews? Even for one of the largest public health crises of our time, we lack

basic information on population behaviors.

Since many behavioral trends do not have existing large-scale, up-to-date surveillance

systems, and even the best systems have significant gaps, there is a large potential for

improvement in using social data to study behavioral medicine [Ayers et al., 2014a].

This section will describe how social monitoring can be used to understand trends in

diet and fitness, including weight loss; substance use, including tobacco and drug abuse; and

preventative care, including public awareness of diseases and attitudes toward vaccination.

Behavioral medicine is also related to mental health, which we will discuss separately in

Section 5.5.

5.2.1 DIET AND FITNESS

Diet and personal fitness are important aspects of behavioral medicine. Studies have found

that topics related to diet, nutrition, weight loss, and exercise are commonly discussed in

popular platforms including Twitter [Paul and Dredze, 2014], Instagram [Garimella et al.,

2016], and Sina Weibo [Wang et al., 2014].

Using public social media, researchers have studied dietary habits by analyzing food

consumption expressed in Twitter [Abbar et al., 2015] and Instagram [Mejova et al., 2015,

Sharma and De Choudhury, 2015]. Fried et al. [2014] found that food-related tweets could

be correlated with rates of obesity and diabetes across geography, and Nguyen et al. [2016]

that such tweets can be used as indicators of diet and fitness at the granularity of city neigh-

borhoods. Chunara et al. [2013] compared physical activity related interests of Facebook

users with obesity rates by area. De Choudhury et al. [2016a] used food content posted on

Instagram to understand dietary differences between “food deserts”—locations with lim-
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ited access to nutritional food—and other locations. Research has also analyzed dietary

patterns in search logs [Kusmierczyk et al., 2015, West et al., 2013]. Ayers et al. [2014d]

found seasonal patterns in searches for healthy foods, among other healthy behaviors.

Researchers have also studied exercise and physical activities in Twitter [Zhang

et al., 2013b], including the effect of exercise on mental health [Reis and Culotta, 2015].

Kiciman and Richardson [2015] analyzed goal-oriented tweets, measuring the outcome of

fitness goals expressed online, such as marathon training. Akbari et al. [2016] built a classi-

fier to detect tweets that mention actions related to wellness, including exercise, diet, and

healthcare utilization. Research even considered the effects of the 2016 Pokémon Go craze

on health [LeBlanc and Chaput, 2016], where Althoff et al. [2016] found that it increased

physical activity and Ayers et al. [2016d] found that it increased distracted driving.

Many online communities exist to discuss and support weight loss and weight man-

agement, including discussion forums, chat rooms, and blogs [Chang et al., 2013, Leggatt-

Cook and Chamberlain, 2012]. Research has analyzed social media to understand the qual-

ity of advice and social support for weight loss in online forums [Hwang et al., 2007, 2010,

2011], as well as Twitter [Pagoto et al., 2014, Turner-McGrievy and Tate, 2013]. Search

and browsing logs have also been analyzed to understand how people browse the web to

support their weight loss plans [schraefel et al., 2009].

Temporal and seasonal trends in weight loss (e.g., before and after New Year’s) have

also been analyzed. Turner-McGrievy and Beets [2015] examined tweets containing hashtags

such as #weightloss to estimate levels of interest in weight loss over time.

Research has examined how obesity is perceived and discussed online, finding that

derogatory comments and cyberbullying related to weight are prevalent on certain social

media platforms, especially on Twitter [Chou et al., 2014, So et al., 2015].

A number of studies have investigated how weight-related social media affects mental

health, examining how social media influences weight perception, body image, and self-

esteem [Das et al., 2014, Fardouly et al., 2015, Ghaznavi and Taylor, 2015, Lee et al.,

2014a, Tiggemann and Slater, 2013]. Research has examined disordered eating in various

social media platforms, including Facebook [Walker et al., 2015], Tumblr [De Choudhury,

2015], and Flickr [Yom-Tov et al., 2012]. Yom-Tov and boyd [2014] analyzed search engine

activity indicative of anorexic practices, finding temporal correlations with celebrity-related

media attention.

5.2.2 SUBSTANCE USE

The use of substances, such as alcohol and tobacco, greatly affects population health. This

section will describe social media-based research on the use and abuse of alcohol, tobacco,

and other drugs. See Sznitman et al. [2014] for a review of using social media to support

substance use research.
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Tobacco

Tobacco is one of the most studied areas of public health. Concerted public health efforts

have caused smoking rates in the U.S. to drop from over 40% in the 1960s to roughly

17% today [Centers for Disease Control and Prevention, 2014]. Despite this success, the

fight against tobacco products continues both in the United States, where smoking kills

480,000 people per year, and internationally, where 6 million people die annually.9 Critical

to ongoing efforts is effective surveillance of tobacco products and prevalence of smoking in

specific populations, such as U.S. teenagers.

Tobacco-related topics are discussed in social media [Prier et al., 2011], and social

monitoring can support a variety of tasks important for tobacco surveillance.

One use of social media is to measure sentiment toward tobacco products [Jain et al.,

2015, Mysĺın et al., 2013]. Tobacco products of particular public health concern recently are

electronic cigarettes (e-cigarettes). Researchers have measured interest in e-cigarettes using

search query volumes [Ayers et al., 2011a, 2016e] and have examined e-cigarette marketing

and sentiment on Twitter [Cole-Lewis et al., 2015, Huang et al., 2014, Lazard et al., 2016].

Ayers et al. [2017] analyze Twitter to understand why people use e-cigarettes.

Social media can also be used to promote and support smoking cessation and

prevention, and researchers have analyzed smoking cessation and online social support

[Cobb et al., 2011, Prochaska et al., 2012, Rocheleau et al., 2015].

Another use of web data for tobacco surveillance is to analyze and understand public

reaction to policy changes, which researchers have measured using tweets [Harris et al.,

2014b, Lazard et al., 2017] and search queries [Ayers et al., 2011b, 2014b].

Additionally, Tobacco Watcher [Cohen et al., 2015] is a real-time surveillance system

that analyzes news media and summarizes tobacco-related content. This system is similar

to HealthMap, described at the beginning of Section 5.1.4, with a focus on tobacco.

Alcohol

Alcohol use has also been examined in social media, though to a lesser extent than tobacco.

Research has shown that temporal trends in alcohol use can be extracted from Twitter

[Aphinyanaphongs et al., 2014, West et al., 2012]. Culotta [2013] found that the volume of

alcohol-related tweets is correlated with alcohol sales across the United States. Researchers

have also examined alcohol-related content in Facebook [Beullens and Schepers, 2013],

particularly among college students [Fournier and Clarke, 2011, Moreno et al., 2012,?, 2014].

Liu et al. [2017] modeled different stages of alcohol use mentioned in Twitter (planning to

use, currently using, reflecting on use).

In contrast to alcohol consumption, Tamersoy et al. [2015] used social media to un-

derstand alcohol abstinence.

9http://www.cdc.gov/tobacco/data_statistics/fact_sheets/fast_facts/
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Marijuana

Legalization of marijuana for non-medical use in several U.S. states has created a pub-

lic health need for timely information on marijuana use, and social data can potentially

provide current insights [Keegan et al., 2017]. Nguyen et al. [2017] showed that marijuana

prevalence in different cities can be estimated through Craigslist housing advertisements,

which sometimes state whether or not marijuana use is permitted. Twitter has been used to

measure sentiment toward marijuana [Cavazos-Rehg et al., 2014, 2015], including a study

that examined attitudes toward marijuana before and after legalization in two American

states [Thompson et al., 2015]. Sentiment specifically toward medical uses of marijuana has

been studied by Dai and Hao [2017].

Prescription and over-the-counter drugs

A major public health concern is prescription drug abuse (including pain relievers and

stimulants), which researchers have begun to monitor using Twitter [Chan et al., 2015,

Genes and Chary, 2014, Hanson et al., 2013a,b, Seaman and Giraud-Carrier, 2016]. Other

research has examined how social media like Twitter may promote unsafe use of prescription

drugs [Mackey et al., 2013], including through the promotion of illegal online pharmacies

[Katsuki et al., 2015].

Aside from abuse, researchers have looked at other types of use and misuse of med-

ications. For example, Scanfeld et al. [2010] found that many Twitter users appear to use

antibiotics incorrectly, and Paul and Dredze [2011] found additional evidence of antibiotic

misuse in Twitter.

Paul and Dredze [2011] also examined Twitter mentions of off-label use of over-the-

counter medications, and Frost et al. [2011] examined off-label use of prescription drugs

through PatientsLikeMe, an online community for patients.

Other illicit drugs

Illicit drug use is a public health issue of increasing prominence, due to increased distri-

bution and information-sharing of drugs over the internet [Wax, 2002]. Record numbers

of new drugs have been detected in recent years [European Monitoring Centre for Drugs

and Drug Addiction, 2012], yet surveillance of new drugs is particularly difficult, as little is

known about these substances, and traditional drug surveys are slow to include novel and

emerging drugs [Dunn et al., 2011].

Researchers have started to address this limitation by using social media data to

learn about drug trends, particularly for new drugs, and comprehensive drug reviews now

commonly include data sources from the web and social media [Hill and Thomas, 2011].

An important research goal is to identify which drugs are out there, along with information

about the drugs such as their effects (positive and negative) and typical dosage. For exam-

ple, the Psychonaut project [Deluca et al., 2012] is an extensive database of information
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Figure 5.2: The top words associated with marijuana in an online drug community. The word

rankings come from research by Paul and Dredze [2013], who applied topic models to discussion

forums to summarize drug information.

about new drugs, using information that researchers obtain primarily from dedicated on-

line communities for drug users, such as drugs-forum.com, where users openly discuss drug

use under the cloak of pseudonymity [Barratt, 2011]. A number of new drugs have been

characterized by reviewing such forums [Corazza et al., 2011, 2012, Gallagher et al., 2012].

While most such studies rely on manual data analysis, natural language processing has also

been applied to drug websites to learn about drugs [Chary et al., 2013, Coyle et al., 2012,

Paul and Dredze, 2013, Strapparava and Mihalcea, 2017]. Paul et al. [2016a] compared de-

mographic and temporal variability across drugs in drugs-forum.com to official government

data (specifically, the NSDUH data described at the beginning of this section), finding high

agreement, thus validating the use of this data source for this type of research. Other types

of social media have also been used for learning about drug use, such as YouTube videos

[Morgan et al., 2010].

In addition to learning the general properties of the drugs, researchers have also

analyzed trends in the use of these drugs over time. General interest in various drugs has

been measured over time using search queries [Curtis et al., 2015] and tweets [Buntain and

Golbeck, 2015]. Ledberg [2015] measured interest in drugs before and after changes in legal

status, analyzing drug forums, finding that interest in many substances drops once they

are no longer legally available.

5.2.3 DISEASE PREVENTION AND AWARENESS

Population health is influenced by individual behaviors regarding the prevention of disease

and reactions to disease outbreaks. This section describes how social media surveillance can
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help understand vaccination behavior, an important part of public health, as well as more

general public awareness of disease.

Vaccination

One of the greatest successes of public health has been large-scale vaccination campaigns,

which have eradicated once deadly diseases and dramatically reduced the prevalence of oth-

ers. While the development of vaccines takes place in a lab, immunization programs lay in

the purview of public health. While immunization rates are high for many targeted diseases,

they remain low for others. For example, seasonal influenza vaccination rates remain low in

the U.S. each year, despite the overall effectiveness and availability of the vaccine.10 Even

for diseases that have traditionally high rates of vaccination, such as measles, mumps and

rubella, the trend of vaccine refusal leaves children vulnerable. Only 70% of children be-

tween ages 19 and 35 months are up-to-date on immunizations [Bass III, 2015], while some

communities in the U.S. have a quarter of school age children with immunization exemp-

tions.11 Social monitoring is a promising new approach toward addressing these vaccination

challenges.

Interest in vaccination can be inferred from online activities. To illustrate this, Figure

5.3 shows the temporal volume of the “flu shot” query taken from Google Trends, which

has a different trend than the “flu symptoms” query, which more closely matches a typical

flu season curve.

A major research topic of social media-based vaccination research is measuring senti-

ment, attitudes, and opinions toward vaccination, in order to understand variation in vacci-

nation acceptance and refusal rates. In one of the earliest studies on this topic, Salathé and

Khandelwal [2011] inferred sentiment toward the influenza A(H1N1) vaccine from Twitter,

finding correlations between sentiment and vaccination rates across geography in the United

States. This research was expanded by Salathé et al. [2013a]. Brooks [2014] also examined

sentiment toward the H1N1 vaccine in Twitter, but did not find significant correlations

with vaccination rates. Huang et al. [2017a] directly classify tweets that mention receipt of

the influenza vaccine (e.g., “got my flu shot today”), and find that such tweets are strongly

correlated with U.S. vaccine coverage across time and geography.

Smith et al. [2016b] examined Twitter to understand rationales for vaccine refusal,

while Dredze et al. [2016c] looked at vaccine misconceptions. Other research has investigated

opinions on the human papillomavirus (HPV) vaccine, analyzing Twitter [Dunn et al., 2015,

Surian et al., 2016], Sina Weibo [Zhang et al., 2013a], MySpace [Keelan et al., 2010], and

YouTube [Briones et al., 2012].

Yom-Tov and Fernandez-Luque [2014] investigated search engine behavior regarding

the measles, mumps, and rubella (MMR) vaccine, finding that pro- or anti-vaccination bias

10http://www.cdc.gov/flu/fluvaxview/
11http://www.cdc.gov/vaccines/imz-managers/SchoolVaxView/data-reports/index.html
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Figure 5.3: Search volumes from Google Trends (https://google.com/trends/) for the queries

“flu shot” and “flu symptoms”. We see that queries for “flu shot” always rise in October, when

the influenza vaccine is distributed each year. Sometimes “flu shot” volume also rises later in

the winter, in tandem with the peak of the influenza season, which is closely tracked by the “flu

symptoms” query volume.

is present in queries. More generally, White and Horvitz [2015] have shown that biases

toward different medical interventions affect how people search for information.

Larson et al. [2013] investigated a variety of vaccination topics by analyzing news

media using data from HealthMap (Section 3.5). Chen et al. [2015a] analyzed concerns

toward vaccines in China by analyzing Sina Weibo. Broniatowski et al. [2016] measured

which factors in the presentation of a vaccine related news article were most compelling to

readers, as measured by how often an article was shared.

Public awareness of disease

Part of disease surveillance includes the monitoring of public awareness of a disease,

particularly during epidemics. Studies have found that a population’s awareness of disease

outbreaks are major factors that affect the disease progression [Funk et al., 2009, Granell

et al., 2013, Jones and Salathé, 2009].

Numerous studies have used social media to measure public awareness of, and reaction

to, disease epidemics. For example, Signorini et al. [2011] examined tweets that indicated

preventative behaviors, such as hand-washing, in response to the swine flu epidemic in
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2009. Szomszor et al. [2011] also analyzed tweets during the swine flu epidemic, focusing on

public trust of various news sources. Mollema et al. [2015] analyzed tweets to characterize

public reactions to the 2013 measles outbreak in the Netherlands. Multiple studies have

analyzed reactions in Twitter to the 2014 ebola outbreak in Africa, focusing on anxieties in

the United States [Fung et al., 2014, Lazard et al., 2015, Odlum, 2015a, Rodriguez-Morales

et al., 2015, Towers et al., 2015]. Concern toward various diseases were measured in Twitter

by Ji et al. [2013], and Bakal and Kavuluru [2017] analyzed how health information gets

retweeted and diffused in Twitter.

Smith et al. [2016a] compared trends of tweets mentioning influenza infection (“I

have the flu”) versus more general mentions (“worried about the next flu season”), finding

distinct patterns in the two trends. Non-infection tweets have a sharper rise and fall than

infection tweets, with less geographic variability. The study suggested that public awareness

of influenza may be driven more by news media than the actual disease prevalence. Smith

and Broniatowski [2016] further explored the interaction between disease dynamics, news

media, and social media using an agent-based model.

In addition to Twitter, awareness of many different diseases have been analyzed

in Chinese social media [Fung et al., 2015], including MERS-CoV and avian influenza A

(H7N9) [Fung et al., 2013].

All of these studies used microblogs (Twitter and Sina Weibo), which are generally

considered a good type of social media for measuring public opinion at scale, since these

platforms encourage everyday users to share opinions with a large audience.

Public awareness of diseases and other health issues is often influenced by news and

actions of celebrities and public figures. A number of researchers have looked at how

celebrity-related news affects attention in social media, regarding health issues including

cancer [Ayers et al., 2014c, Noar et al., 2013, 2015], smoking [Sanders-Jackson et al., 2015],

eating disorders [Yom-Tov and boyd, 2014], and suicide [Kumar et al., 2015]. Bragazzi et al.

[2016] found that actor Harold Ramis’ death of vasculitis, an autoimmune disorder, resulted

in an increase in vasculitis-related Google searches, tweets, and Wikipedia visits. Ayers et al.

[2016c] found that actor Charlie Sheen’s public disclosure of human immunodeficiency virus

(HIV) led to an increase in HIV-related news media and Google searches, and Allem et al.

[2017] found that it also led to a rise in at-home testing.

A common tool for raising public health awareness is through organized awareness

campaigns. Social data has become a tool for measuring the effectiveness of awareness

campaigns. For example, Ayers et al. [2012a], Ayers et al. [2016b] and Westmaas et al.

[2015] used search and social media data to measure the effect of tobacco awareness days

on public attention, and Thackeray et al. [2013] and Bravo and Hoffman-Goetz [2015]

examined tweets during cancer awareness campaigns.
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Public response to guidelines and policies

Governments and organizations often promote public health through guidelines, advisories,

and legal policies, and it is important to understand the public’s attitudes and adherence

toward such policies. As put by Giabbanelli et al., “Public opinions play an important role

in planning policies. A beneficial population intervention may not be publicly acceptable, or

policymakers may be over-cautious and believe their constituents do not sufficiently support

it. Understanding the feasibility and framing of interventions based on public support is thus

an important endeavor for public health” [2016]. Similar to measuring public awareness,

social media can provide insights into the public’s attitudes toward public health guidelines.

Giabbanelli et al. [2016] analyzed Twitter to characterize public opinion toward pro-

posed taxes on sugary beverages in California. Nastasi et al. [2017] and Khasnavis et al.

[2017] used Twitter to understand the public response to screening guidelines for breast

cancer and lung cancer, respectively. Researchers have also used social data to understand

public opinions on current and proposed regulations of tobacco products [Ayers et al.,

2011b, 2014b, Harris et al., 2014b, Lazard et al., 2017].

5.3 ENVIRONMENTAL AND URBAN HEALTH

While the previous section on behavioral medicine focused on choices people make that

affect their health, this section focuses on external factors that affect one’s health that

are largely out of an individual’s control: things like pollution, disasters, food quality, and

crime. While this is a broad range of issues, they share a common thread: these are topics

in which a government, or non-governmental agency, seeks to reach out and learn about a

population’s experience with these factors, while the population in turn is incentivized to

connect with the organization to share information.

In responses to disasters, social media provides a channel of communication, whereby

the government can distribute information to the public and individuals can share on-the-

ground updates and emergency requests with the government. The same is true of detecting

food poisoning events, where the public may wish to report specific instances to food safety

regulators. These types of issues have traditionally relied on individuals actively making

reports to governments, through services such as 3-1-1 in the United States, rather than

using more traditional public health surveillance systems. Recent research has shown how

social media can be used as a reporting mechanism [Eshleman and Yang, 2014, Frias-

Martinez et al., 2014].

In this section, we will describe how social monitoring can help with emergency

management, food safety, air quality monitoring, climate change, and gun violence.

5.3.1 DISASTER AND EMERGENCY RESPONSE

Social media plays an important role in the management of emergencies such as natural

disasters. Social media can be used during emergencies in a number of ways, including
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communication to the public, communication between respondents, and surveillance to

monitor the situation.

On the surveillance side, social data has been used extensively for situational aware-

ness, the understanding of the events that have taken place and the current public response

[Abel et al., 2012, Bennett et al., 2013, Cameron et al., 2012, Power et al., 2014, Tobias,

2011, Verma et al., 2011, Vieweg, 2012, Vieweg et al., 2010, Yin et al., 2012]. Most re-

search on situational awareness has used microblogs as the data source, though Facebook

[Gunawong and Jankananon, 2015] and Wikipedia [Steiner, 2014] have also been considered.

In addition to situational awareness, researchers have also found utility in analyzing

mood and sentiment during disasters [Buscaldi and Hernandez-Farias, 2015, Doan et al.,

2012, Lu et al., 2015].

The bulk of disaster response research with social media has been for natural disas-

ters such as earthquakes and hurricanes, but similar methods can be used to detect other

important events such as acts of crime or terrorism. See Imran et al. [2015] for a survey on

methodologies for using social media during emergencies.

Natural disasters

Several studies have shown that microblogs can be used to detect earthquakes in real

time, including with Twitter [Burks et al., 2014, Crooks et al., 2013, Earle et al., 2012,

Robinson et al., 2013, Sakaki et al., 2010, 2013] and Sina Weibo [Robinson et al., 2014].

Social sensors of earthquakes can augment physical sensors with more localized information,

as well as with richer reports of damage and impact. Doan et al. [2012] also showed how

tweets can measure public response to earthquakes. In addition to detecting earthquakes,

social media can also play a crucial role in coordination and management of response [Yates

and Paquette, 2011], including search and rescue [Simon et al., 2014a].

Similar to earthquakes, research has shown how social media can be used to monitor

and understand storms, including hurricanes [Kogan et al., 2015, Mandel et al., 2012, Stowe

et al., 2016, Wang et al., 2015a] and tornadoes [Blanford et al., 2014]. Situational awareness

is important both during and after storms, and in particular many researchers have used

social media to monitor and respond to flooding [Buscaldi and Hernandez-Farias, 2015,

Dashti et al., 2014, Fuchs et al., 2013, Gunawong and Jankananon, 2015, Mao et al., 2014,

Supian et al., 2017] and waterlogging [Zhang et al., 2014b]. In addition to informal first-

hand reports of storms and flooding, researchers have also analyzed how official information

is shared through social media [Genes et al., 2014].

Twitter has also been used to detect and monitor fire events, such as forest fires

[Power et al., 2013, 2015, Slavkovikj et al., 2014].
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Other emergencies and events

Schulz et al. [2013] demonstrated that car accident incidents can be detected in Twitter,

while introducing methods appropriate for detecting small-scale incidents, in contrast to

large-scale disasters. Also focusing on small-scale incidents, Bendler et al. [2014] showed

how Twitter can be monitored to detect reports of crime in neighborhoods. Twitter can

also be used as an information source during episodes of cardiac arrest [Bosley et al., 2013].

Researchers have analyzed social media to monitor and understand shootings and

terrorist events, including the Boston marathon bombings [Cassa et al., 2013], the 2012

massacre in Aurora, Colorado [Page, 2013], and the Westgate Mall attack in Kenya [Simon

et al., 2014b]. Rodriguez Jr. [2014] analyzed Twitter to understand the impact of terrorist

groups in Africa.

5.3.2 FOODBORNE ILLNESS

Tens of millions of people fall ill to foodborne illness every year in the United States, often

from food in restaurants [McCabe-Sellers and Beattie, 2004]. Surveillance of restaurants

typically involves a combination of routine inspection and investigations following citizen

complaints. Many citizens do not file official reports when catching food poisoning, so

passive monitoring of social media is a promising method for increasing the coverage of

reported incidents, as people often voice complaints against restaurants on social media

[Newkirk et al., 2012].

Researchers have shown that mentions of food poisoning, an indicator of foodborne

illness, can be detected in online restaurant reviews from Yelp [Joaristi et al., 2016, Kang

et al., 2013, Nsoesie et al., 2014b] as well as messages in Twitter [Ordun et al., 2013]. A

Twitter-based system, nEmesis [Sadilek et al., 2013], was deployed in Las Vegas in 2015 as

part of a program to flag restaurants for inspection. This system led to a 63% increase in

identifying restaurants with health violations compared to a control [Sadilek et al., 2017].

Two well-known food surveillance projects were undertaken by the cities of Chicago

and New York. The Chicago Department of Public Health launched a program called Food-

Borne Chicago to perform foodborne illness surveillance in social media [Harris et al.,

2014a]. This system uses a supervised machine learning classifier to identify messages

in Twitter that indicate someone has experienced food poisoning. Authors of identi-

fied messages are contacted and asked to submit a report through the program website,

www.foodbornechicago.org.

Around the same time, the New York City Department of Health and Mental Hygiene

launched a pilot program to investigate reports of foodborne illness in restaurant reviews,

using data from Yelp [Harrison et al., 2014]. As with the Chicago program, authors of

identified reviews were contacted through Yelp for a followup report. During this study,

investigators detected previously undiscovered illness outbreaks.
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5.3.3 AIR QUALITY

Research has shown that levels of air pollution can be estimated based on complaints

of poor air quality in social media. Researchers have investigated air quality in China

through Sina Weibo [Mei et al., 2014, Wang and Bai, 2014, Wang et al., 2015b] and in the

United States through Twitter [Riga and Karatzas, 2014]. In contrast to physical sensors

of pollutant levels, social media-based analysis measures public perceptions of air quality,

which is also important to public health, as perceptions of pollution are stronger predictors

of willingness to reduce pollution [Zeidner and Shechtera, 1988].

It is also important to understand public response to air pollution, which can have

an effect on health, such as behaviors to prevent discomfort [Bresnahan et al., 1997]. Wang

et al. [2015b] analyzed responses to poor air quality in Sina Weibo, and Zhang et al. [2014c]

examined how smartphone applications can be used to measure public response to air

pollution outbreaks. A case study of using Sina Weibo to measure public response to air

quality was presented by Wang and Bai [2014], focusing on the 2013 Harbin haze disaster.

Chen et al. [2017] combined physical sensor data with social media data to produce

forecasts of smog-related hazards.

5.3.4 CLIMATE CHANGE

The potential effects of climate change on the environment are well known, but public health

is concerned about its impact on health [Haines et al., 2006]. The World Health Organization

considers climate change a significant threat to public health as it can endanger access to

safe water, food, and clean air.12

The major focus of public health activities around climate change is preparedness

[Frumkin et al., 2008], but the primary role of social monitoring in climate change is as a

tool in public advocacy. Studies have looked at Twitter to gauge responses to climate change

reports [Newman, 2016] or protest events [Segerberg and Bennett, 2011]. Leas et al. [2016]

measured the impact on public awareness of climate change following celebrity advocacy.

5.3.5 GUN VIOLENCE

Gun violence is a major problem in the United States, with gun homicide rates more

than 25 times higher than other high-income countries [Grinshteyn and Hemenway, 2016].

Gun violence is not typically thought of as a public health problem, but it is helpful to

consider gun violence through the public health framework [Koop and Lundberg, 1992,

Matthew Miller, 2013, Mercy et al., 1993, Mozaffarian et al., 2013], as it provides a way of

thinking about the problem: population data collection, and intervention design.

A particular challenge of research in this area has been a lack of data, caused by a

lack of federal funding due to political concerns. Between 2009 and 2012, the CDC spent

12http://www.who.int/globalchange/en/

PREPRINT



5.4. HEALTHCARE QUALITY AND SAFETY 69

just over $100,000 annually on firearm injury prevention research [Mayors Against Illegal

Guns, 2013], a tiny amount compared to programs like BRFSS ($18 million in 2015).13

Spending restrictions result from the 1996 Dickey amendment [Public Law, 1996], which

led to a 96% drop in gun injury prevention funding within the CDC [Mayors Against Illegal

Guns, 2013]. See Ayers et al. [2016a], Jamieson [2013], Rubin [2016] for a more detailed

explanation of funding.

A large gap in available data means greater promise for social monitoring work.

Pavlick et al. [2016] used crowdsourcing and natural language processing of news articles to

create The Gun Violence Database,14 a listing of gun violence incidents in the United States.

Benton et al. [2016a] used a topic model analysis of gun-related tweets in the year following

the Sandy Hook Elementary School shooting to understand perspectives surrounding the

debate on guns. In a related study, Benton et al. [2016b] showed that topic models trained

on Twitter data could be used to predict the responses in telephone surveys, including on

questions related to gun control. Stefanone et al. [2015] studied how images related to gun

control spread on Twitter. Finally, Ayers et al. [2016a] used Google search query trends to

characterize reactions to mass shootings, including how different types of reactions showed

different response patterns.

5.4 HEALTHCARE QUALITY AND SAFETY

Healthcare quality and safety are centered in the clinical patient experience. These interac-

tions take place within the confines of clinics and hospitals, which would suggest that the

role of social data is limited. However, the mechanisms for collecting information on these

issues are limited, meaning that there is an opportunity for filling in information gaps from

online data sources.

Makary and Daniel [2016] argues that medical errors are the third leading cause

of death in the United States, trailing behind only heart disease and cancer. While care

providers naturally take numerous steps to minimize medical errors while treating patients,

such errors still account for a large number of negative outcomes. Hospital acquired infec-

tions, incidents where a patient is admitted to a hospital and then acquires an unrelated

infection, were responsible for 722,000 infections and 75,000 deaths during hospitalization

in the United States in 2011 [Magill et al., 2014].

A critical step in addressing medical errors is a surveillance system that can identify

errors when they occur. Once identified, preventative and mitigating steps can be put into

place to improve outcomes. While there is a recognition that patients need to have an active

role in such surveillance [Emslie et al., 2002], patient voices often go unheard [Ward and

Armitage, 2012], leading to an under-reporting of errors and an omission of an important

perspective in delivering care. Alternative methods of data collection that can directly

13https://www.cdc.gov/chronicdisease/resources/publications/aag/brfss.htm
14http://gun-violence.org/
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Rating Review body

5.0 I’ve been seeing Dr. X for years. She listens to all of your con-
cerns and always errs on the side of caution. She’s the best!

3.5 I love Dr X since he HELPs me get well, and he takes many
types of insurance. I know he cares and wants to help. The staff
is terrible, but he is fantastic.

1.0 This is the worst medical office I’ve ever been to. They do not
have voicemail, and the doctor never returns my messages with
the receptionist. NOT RELIABLE AT ALL!!!

Table 5.2: Examples (paraphrased) of anonymous doctor reviews from RateMDs.com, rated

on a scale from 1–5, edited to remove names. Research has found that online doctor reviews are

predictive of standard healthcare quality metrics [Segal et al., 2012, Wallace et al., 2014].

collect information from patients can offer a new method for incorporating the patient’s

perspective on quality and safety [Greaves et al., 2013, Pronovost et al., 2006].

This section will describe how social data can be used to monitor the quality of

healthcare providers as well as the safety of medications.

5.4.1 HEALTHCARE QUALITY

Many patients now share their healthcare experiences online, through general-purpose social

media as well as reviews of healthcare providers, creating opportunities for using social

media to detect poor care [Greaves et al., 2013]. Examples of doctor reviews are shown in

Table 5.2.

López et al. [2012] conducted a qualitative content analysis of a sample of doctor

reviews, finding that descriptions of doctors are mostly positive, while sentiment toward

systems issues (office and staff) are more mixed. Brody and Elhadad [2010] and Paul et al.

[2013] similarly conducted content analyses, but using automated methods, applying topic

models to large sets of reviews.

Additional research has shown that online doctor reviews are predictive of healthcare

quality. Segal et al. [2012] found that review sentiment is correlated with surgeon volume,

and Wallace et al. [2014] found that review sentiment is correlated with followup visit likeli-

hood, both considered proxies for healthcare quality. Mowery et al. [2016] found that Google

reviews of nursing homes were correlated with Centers for Medicare and Medicaid Services

(CMS) inspection results. Ranard et al. [2016] found Yelp ratings to be correlated with the

Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) survey,

considered the gold standard for evaluating patient experiences. The authors conclude that

online reviews can supplement traditional surveys.

However, Okike et al. [2016] found no correlation between reviews of cardiac surgeons

and outcomes (risk-adjusted mortality rates). The authors caution, “Patients using online
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rating websites to guide their choice of physician should recognize that these ratings may

not reflect actual quality of care as defined by accepted metrics.”

Doctor reviews have also been analyzed in China [Hao and Zhang, 2016]. Compared

to doctor reviews in the U.S., Chinese doctor reviews tend to focus more on treatments

and less on external aspects like staff [Hao et al., 2017].

Healthcare quality has also been examined in Twitter [Hawkins et al., 2015]. Greaves

et al. [2014] analyzed tweets directed at hospitals, finding that most tweets were not about

care quality, but among those that were, most were positive. Nakhasi et al. [2012, 2015],

in contrast, focused on tweets about negative quality, and characterized tweets describing

medical mistakes.

5.4.2 MEDICATION SAFETY

Another important task regarding health safety is pharmacovigilance, the monitoring of

adverse drug reactions (ADRs)—negative side effects to medical use of drugs. Adverse

reactions to drugs are often discovered after clinical trials, when drugs enter the market,

and health agencies must monitor populations for reports of ADRs [Harpaz et al., 2012].

Traditional pharmacovigilance relies heavily on feedback from patients, who may not always

file formal complaints; instead, recent research has investigated monitoring social media

and search activity to infer when ADRs have been experienced. See Sarker et al. [2015] and

Tricco et al. [2017] for reviews of using social data for pharmacovigilance.

A number of studies have detected ADRs from various types of social media, in-

cluding health communities and forums [Benton et al., 2011, Leaman and Wojtulewicz,

2010, Nikfarjam and Gonzalez, 2011, Yates et al., 2013], online reviews of drugs [Yates and

Goharian, 2013], and Twitter [Bian et al., 2012, Freifeld et al., 2014, Jiang and Zheng,

2013, Nikfarjam et al., 2015, O’Connor et al., 2014, Plachouras et al., 2016]. These systems

typically use natural language processing to identify mentions of drugs and ADRs in the

user-generated text. Cho et al. [2017] identify when forum users discontinue a medication,

which is often due to ADRs experienced by the users.

ADRs have also been mined from search query logs. Yom-Tov and Gabrilovich [2013]

mined ADRs from Yahoo search logs. White et al. [2013, 2014] conducted similar studies

using Bing search logs, focusing on drug-drug interactions—ADRs that result from com-

binations of drugs [Vilar et al., 2017]. Both of these studies looked for users who searched

various symptom terms after searching for the name of a drug, and the studies showed that

it is possible to identify ADRs not previously reported. These projects required access to

multiple queries within a single user’s search history, which is not data that can be publicly

obtained through aggregation services like Google Trends. Hence, these studies were done

by researchers at Yahoo and Microsoft, who had access to this type of proprietary data.
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5.5 MENTAL HEALTH

Mental health, otherwise known as behavioral health, is an area of health with one of the

largest gaps between the seriousness of the problem and the little information we have

available. This makes it one of the most promising areas of research with social monitoring.

Let’s start with what we know. Mental illness is the leading cause of disability in the

United States [Kleinman, 2009], with mental illness costing the U.S. $201 billion annually

[Roehrig, 2016]. Suicide is one of the ten leading causes of death in the U.S., and 16%

of people will experience depression in their lifetime.15 Mental illness has a similar global

profile, with the World Health Organization reporting mental illnesses the leading causes

of disability adjusted life years (DALYs) worldwide [Alwan et al., 2011].

The first step to addressing mental illness is obtaining reliable information and ev-

idence. The WHO’s Mental Health Action Plan for the next two decades calls for the

strengthening of “information systems, evidence and research.” The action plan proposes

an ambitious goal: 80% of countries should routinely collect and report a core set of mental

health indicators every two years [World Health Organization, 2013].

Treating mental illness happens in the context of a doctor-patient relationship. But

while treatments for mental health disorders can be effective, most people diagnosed with a

mental disorder go untreated [Kessler et al., 2005]. Public health seeks to reverse this trend

on a population level by increasing awareness about mental health, eliminating stigmas

and health disparities, and improving access to mental health services [Centers for Disease

Control and Prevention (CDC), 2005, U.S. Department of Health and Human Services,

1999]. Additionally, we seek to identify risk factors associated with mental illness, especially

those surrounding suicide.

These are ambitious goals, made difficult by large gaps in our understanding of mental

health trends in populations [Colpe et al., 2010]. The CDC leads a national effort to collect

and maintain surveillance data on mental illness in the United States [Reeves et al., 2011].

Mental health information comes from at least 8 different surveillance systems, including

the previously described Behavioral Risk Factor Surveillance System (BRFSS). However,

none of these systems is focused specifically on mental illness.

As a result, we sometimes lack meaningful data to understand important mental

health trends. Consider the case of suicide rates in the U.S. military. Officials noticed

increased suicide attempts in the U.S. Army during the wars in Afghanistan and Iraq.

However, it took years to confirm this trend and assemble a study to measure it. The Army

Study to Assess Risk and Resilience in Servicemembers (STARRS) program included a

longitudinal, retrospective cohort study to identify factors linked to suicide attempts, and

to measure the rate of these attempts. The study examined medically documented suicide

attempts among active-duty regular Army soldiers from 2004 to 2009, a time period that

15https://www.nimh.nih.gov/health/statistics/suicide/index.shtml
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included nearly 10,000 suicide attempts. The studies findings were published in 2015, years

after this trend first emerged [Ursano et al., 2015].

In response to these data needs, researchers have turned to social data to gain in-

sights into a wide range of mental health disorders. Social data is especially attractive in

this case because mental health fundamentally affects behavior, which is exhibited in on-

line behaviors, and social stigma around mental health discourages self-reports. Researchers

have begun using publicly posted social media messages as a data source for studying a

variety of mental health conditions [De Choudhury, 2013, 2014a]. In addition to general so-

cial media platforms like Twitter, mental health support communities are a prominent data

source [Cohan et al., 2016, Kavuluru et al., 2016]. These communities serve as important

support role, and improvements to how these communities function could improve mental

health outcomes.

This section focuses on three of the most prominent areas of research: depression,

suicide and mood. See Calvo et al. [2017] for a review of using social media and other text

data for various mental health applications.

5.5.1 DEPRESSION

Perhaps due to its high prevalence in the population—nearly 10% of the adult U.S. popu-

lation currently suffers from depression [Centers for Disease Control and Prevention, 2010,

Kessler et al., 1994]—depression has received the most attention of any condition [De

Choudhury et al., 2013c], with research looking at Twitter [Coppersmith et al., 2014b,

De Choudhury and Gamon, 2013, Prieto et al., 2014], Reddit [De Choudhury and De,

2014], Facebook [Jelenchick et al., 2013, Moreno et al., 2011], and search query logs [Yang

et al., 2010], among others. Depression-related research has looked for indicators of bipolar

disorder in Twitter [Flekova et al., 2015], tools for measuring the degree to which a user

is depressed [Schwartz et al., 2014], and even predicting oncoming depressive episodes be-

fore their onset [De Choudhury and Gamon, 2013]. This diverse range of studies strongly

evidences the ability of social data to provide insights into depression in both populations

and individuals.

Other work has focused on a specific form of depression: postpartum depression,

which affects women after childbirth. De Choudhury et al. [2013a] provided methods for

identifying major life changes, such as childbirth, from social media data. De Choudhury

et al. [2013b] predicted postpartum changes in emotion and behavior from Twitter, and De

Choudhury et al. [2014a] showed similar results for Facebook.

5.5.2 SUICIDE AND SELF-HARM

The relation between social media and suicide is well recognized [Luxton et al., 2012];

suicidal individuals often reach out using social media, or are impacted by their treatment

in online communities. While predicting suicide is a notoriously difficult problem, research
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with social media has looked at population-level trends. Won et al. [2013] used social media

data to predict national suicide numbers. Jashinsky et al. [2015] used Twitter to track

suicide risk factors. Kumar et al. [2015] relied on Reddit data to measure the Werther

effect, the idea that an individual’s suicide depicted in the media leads to an increased rate

of completed or attempted suicides.

At the individual level, Braithwaite et al. [2016] showed that Twitter users who are

at high risk for suicide can be reliably identified with machine learning classifiers. Huang

et al. [2017b] analyzed the feeds of 130 Sina Weibo users who committed suicide, looking

at temporal shifts in sentiment and content leading up to the time of death. De Choudhury

et al. [2016b] identify when users shift from general mental health concerns to suicidal

ideation.

Social media has also been used to understand the role of social support for suicidal

individuals, for example in suicide watch forums [Kavuluru et al., 2016]. De Choudhury

and Kiciman [2017] studied how language and actions used in mental health support com-

munities on Reddit affected suicidal ideation by users in the future.

5.5.3 MOOD

Another common topic of study is the emotional states of individuals, also known as moods,

which impact attitudes and behavior [De Choudhury, 2014b, De Choudhury et al., 2012,?,

Golder and Macy, 2011, Hannak et al., 2010, Lampos et al., 2013]. This has extended

to measurements of personality [Schwartz et al., 2013], including the development of au-

tomated personality assessments from social media [Park et al., 2014] and studying how

personality, age, and gender impact mental illnesses [Preoţiuc-Pietro et al., 2015].

5.5.4 OTHER MENTAL HEALTH ISSUES

Beyond these mental health issues, other work has explored a variety of topics, including

post-traumatic stress disorder (PTSD) [Coppersmith et al., 2014a], sleep and insomnia

patterns [McIver et al., 2015, Tian et al., 2016], stress [Doan et al., 2017, Wang et al., 2016],

eating disorders [De Choudhury, 2015, Walker et al., 2015], smoking and drinking problems

[Tamersoy et al., 2015], links between exercise and mental health [Reis and Culotta, 2015],

schizophrenia [Mitchell et al., 2015], and links between psychological language and heart

disease [Eichstaedt et al., 2015]. Coppersmith et al. [2015b] developed general methods for

obtaining large collections of data for ten disorders based on users’ self-reported diagnoses

[Coppersmith et al., 2014b].

Search trends have been used to study patterns in mental health problems at the

population level. Ayers et al. [2013] identified seasonal patterns in seeking mental health

information on Google, identifying winter peaks across a range of disorders. Similar tech-

niques were used to identify psychological impacts of the Great Recession [Althouse et al.,
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2014]. At the individual level, Yom-Tov et al. [2014b] analyzed search logs to detect changes

in behavior associated with mood disorders.

Additionally, researchers have studied online discussions of mental health issues to

understand attitudes and beliefs about mental illness [Reavley and Pilkington, 2014]. This

has included studying how people talk about their mental health issues [De Choudhury

and De, 2014] and what users are willing to disclose online [Balani and De Choudhury,

2015]. Hwang and Hollingshead [2016] found that people with greater awareness of mental

illnesses are less likely to use stigmatizing language on Twitter.
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C H A P T E R 6

Limitations and Concerns

As with any new source of data, social monitoring raises challenges for research [Babbie,

2016]. What are the limits of how we can use social data? What should be the limits? These

conversations arise, especially in health, whenever new data sources open new opportunities

for research. One challenge to understanding and addressing these limits and concerns are

that researchers with computational backgrounds, who are often unfamiliar with existing

conversations and practices in health and medicine, are at the forefront of developing new

applications and uses for social data in health. Additionally, even researchers with a long

history of work in health are unsure of how existing methods and practices apply to social

data.

This chapter summarizes the limits and concerns of using social monitoring in health

across three areas. First, what are the scientific limitations of using social data in research,

and what are the methodological issues that must be addressed in such research? Second,

how can information derived from web sources be actioned, and how should systems based

on social data be used by practitioners, now and in the future? Third, what are the ethi-

cal considerations involved in conducting research with user-generated data? What limits

should be placed on the use of these data?

6.1 METHODOLOGICAL LIMITATIONS

A common concern raised about using social data for health research is that the data

itself are flawed, and therefore any findings derived from the data, and uses of the data,

are necessarily flawed. How can data, created and collected without health applications

in mind, with a multitude of poorly understood biases, be considered reliable for making

patient and public health decisions?

Critics of these data often point to the high profile failure of Google Flu Trends (GFT)

[Lazer et al., 2014b]. As early as 2003, researchers began investigating how people use web

search engines to seek health information [Eysenbach and Kohler, 2003, Eysenbach and

Köhler, 2004]. This included considering trends in web searches around seasonal influenza

as a means of rapid syndromic surveillance [Eysenbach, 2006]. When GFT premiered in

2008 [Watts, 2008], it was hailed as a major step forward in flu surveillance, with the

ability to uncover flu outbreaks earlier than current surveillance methods employed by the

CDC. The premier features a new website, and a publication of a high profile research

paper [Ginsberg et al., 2009]. While the authors were careful to describe their work as a
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complement to existing surveillance methods, many interpreted the work as the future of

infectious disease surveillance.

Perceptions of GFT changed in the wake of the 2012-2013 flu season. That year

showed very high rates of infection, which lead to officials calling the outbreak a public

health emergency. This lead to increased coverage of the flu season in the media, and there

was widespread concern among the general public. An analysis of GFT during this period,

especially during the height of news coverage, showed extremely large increases in the

influenza rate [Lazer et al., 2014a]. Yet when compared with the surveillance measures at

the CDC, the spike in infection failed to materialize. The common theory is that the general

public, faced with scary stories about an outbreak, took to the web in large numbers in

search of information about the flu [Harford, 2014]. Google’s algorithms took this increase

in searches as an indication of a rise in the infection rate, whereas it was only indicative of

increased concern about of the disease.

This explanation is supported by work from the same flu season using Twitter data,

which automatically separated tweets describing infection from more general tweets, yield-

ing a more modest rise in infection rates during the same period of increased news cover-

age [Broniatowski et al., 2013]. Additionally, work with more sophisticated methods using

Google’s data also mitigated the problems discovered in GFT’s system [Martin et al., 2014,

Santillana et al., 2014b]. Google itself made updates to its surveillance model in 2013 and

2014, although it has since shut down its public system.

The fallout of this public failure led to criticisms of big data [Harford, 2014, Lazer

and Kennedy, 2015], and spurred the creation of clearer guidelines on how new data sources

should be used in syndromic surveillance [Althouse et al., 2015]. We can summarize one

major conclusion of this criticism: big data is not magic, and it doesn’t replace principled

models and methods.

We provide the case of GFT as a cautionary tale. Yes, social data can produce new

insights and abilities for a range of health problems. However, these opportunities do not

come without major methodological challenges that must be addressed to ensure that the

data provide reliable and meaningful insights.

Thankfully, while the specific manifestation of challenges posed by these data are

new, the types of limitations have long been addressed in earlier work with traditional data

sources, such as the reliability and representativeness of the data. This section describes

some of the major methodological limitations that arise when using social data for public

health research and surveillance, and point to prior and new work on addressing these

limitations. We also refer the reader to work that discusses common limitations of social

media research in detail: Ruths and Pfeffer [2014], Shah et al. [2015], Tufekci [2014].

PREPRINT



78 6. LIMITATIONS AND CONCERNS

6.1.1 LIMITATIONS OF SELF-REPORTED DATA

Social data is fundamentally a collection of self-reports. Users decide what to write on

social platforms, and what they want to enter into a search engine. This problem may be

even more acute in some circumstances when self-reports are passive, i.e., the users offer

information without prompting, rather than active, e.g., in response to a survey.

Users may misreport their health statuses, due to poor memory, over- or under-

estimation of health behavior, or incorrect self-diagnosis. Conflations of medical terms in

common parlance may mean a misreport. For example, a social media user might state that

they have the flu, when in fact the user might have the common cold. One study estimates

that approximately 40% of flu tweets are misdiagnoses, and using these tweets without

correction worsens surveillance [Mowery, 2016]. In general, self-reported health status is

not always reliable compared to objective measurements [Newell et al., 1999, Saunders

et al., 2011], and self-perceptions of health can vary across demographic groups and other

factors [Brener et al., 2003, Jürges, 2007].

Underreporting is another problem, in that social media users do not always (and

in fact, rarely) choose to report their current health status. For example, it is certainly the

case that the number of Twitter users who report they have influenza is less than the number

of Twitter users who have influenza. Compare the expected underreporting of a common

illness like influenza, to sexually transmitted diseases or mental health issues, which are

associated with stigmas that discourage public acknowledgement of these illnesses. This is

a general limitation of passive surveillance—we only know what users choose to share, and

of the public nature of many social media platforms. Furthermore, not only are positive

instances (e.g., influenza infection) underreported, but negative instances (e.g., no infection)

are often not reported at all. That is, some Twitter users might state that they have the

flu, but users almost never state that they do not have the flu. This is an example of data

missing not at random (MNAR) [Mohan et al., 2013, Rubin, 1976], and a problem of an

unknown denominator when estimating prevalence [Chunara et al., 2017, Tufekci, 2014].

Finally, there may also be a bias in the set of people who choose to share such information

(discussed in Section 6.1.5), complicating interpretation of the data. Views on privacy differ

by age group [Paine et al., 2007], and it is likely that some groups may be more willing to

share health information on public platforms.

Another issue with using self-reported data is handling variation in medical termi-

nology reported by laypeople on social media. Some users might be limited in reporting an

illness if they do not know the name of the illness, and other users might use informal terms

(e.g., “flu” rather than “influenza”), so any algorithm that filters for mentions of illness

must be able to accommodate variation in terminology. Some research has created mappings

between formal and informal terms to address the “terminology gap” between medical pro-

fessionals and Twitter users [Nie et al., 2014a,b]. Pimpalkhute et al. [2014] used phonetic

spelling correction to adjust for the spelling difficulty of drug names. Another approach is
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to focus on reports of symptoms, rather than mentions of a specific illness, to account for

the unreliability of self-diagnosis. This approach has been used for Twitter-based influenza

surveillance [Gesualdo et al., 2013, Velardi et al., 2014].

6.1.2 SAMPLING AND SAMPLE SIZE

While data from the web are often described as big data, the data will shrink upon filter-

ing for relevant content (Section 4.1.1). In most general purpose platforms, only a small

percentage of data is related to health, and an even smaller percentage will be related to

any one health issue. The small size of relevant data can make it difficult to reliably study

health issues that are rare or not commonly discussed, as well as to focus on health in small

populations. For example, Paul et al. [2015a] found a correlation between the population of

a location and the accuracy of Twitter-based flu surveillance: there are plenty of flu-related

tweets across the United States, but few within any one city.

Another issue is that one typically works with smaller samples of original data. For

example, most available Twitter data is in the form of a 1% sample of all tweets (Section

3.5). However, Twitter does not publish the details of how the 1% is selected. Statistical

models typically assume that data samples are independent and identically distributed, but

this assumption is not necessarily true of Twitter samples [Morstatter et al., 2013]. In some

cases, like with Facebook, random samples are not available at all, and instead one must

collect data filtered for specific keywords, which can further bias the results.

Sampling can be particularly problematic when using data for geospatial analysis

or location and demographic inference. In geospatial analysis, random clusters of points in

space may be formed by chance when such clusters do not exist in the full data [Jones, 2014,

O’Sullivan and Unwin, 2010]. Moreover, it has been observed that geo-tagged tweets are

not randomly distributed over the U.S. population [Malik et al., 2015], and there are con-

founding factors and biases when inferring location information for Twitter users [Johnson

et al., 2017, Pavalanathan and Eisenstein, 2015]. Wood-Doughty et al. [2017] showed how

users from different demographic groups have different social media use patterns, which

can lead to biases in demographic inference.

Additionally, data collection methods can influence the conclusions drawn from the

data. Mac Kim et al. [2016] compared several Twitter data collection techniques and showed

how the method can bias demographic inference. Rafail [2017] also compared different meth-

ods of sampling Twitter, finding that hashtag-based sampling missed important character-

istics of Twitter activity and could be misleading.

In all of these cases, care must be taken to consider where data come from, how they

are collected, and how these methods can influence the resulting analyses.
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6.1.3 RELIABILITY OF THIRD-PARTY DATA

There are a number of drawbacks to using data that is owned by third parties, such as

Twitter and Google.

An important concern with third-party data collection is the effect on scientific re-

producibility. In some cases, as with search query logs, the raw data is proprietary and

cannot be shared with researchers outside of the company that owns the data. Even data

that is publicly available at the time of study might not be available in the future. For

example, while tweets are publicly available, they cannot be directly shared, per Twitter’s

terms of use. Instead, researchers can share the identifiers of tweets used in their datasets,

which other researchers can download using the Twitter API. However, if a tweet is deleted,

then it will not be available when someone tries to access it in the future. This setup pro-

tects the users of Twitter, providing users with control over their data, but this protection

has the consequence that Twitter datasets typically cannot be recreated exactly.

Another drawback of third-party data is that, since external researchers do not control

the data, one must account for potential changes in a data stream over time that might

affect models using the data. Any web platform will experience changes in usage levels over

time. A famous example is MySpace, whose popularity rapidly fell in competition with

Facebook. Changes in popularity can skew volume-based measurements of social media

data, so data must be appropriately normalized to adjust for variation over time (Section

4.1.2). The demographic composition of a platform’s users can also shift over time. For

example, Facebook was originally only available to college students, but has since been

adopted by all groups.

In addition to changes in who uses a platform, there will often be shifts in how a plat-

form is used. Often these shifts are in response to changes made to a platform. For example,

early Twitter users would retweet (that is, post a previously published tweet) messages by

quoting the original tweet and adding the letters “RT” to the beginning. Later, Twitter

updated their platform so that retweet functionality is built directly into the system, such

that users can retweet a message with the click of a button, and the data API provides

information about whether a message is a retweet. Twitter then updated the retweet func-

tionality so that users can add a comment in response to a tweet. More recently, Twitter

changed how reply-to messages are structured. Similar changes have been made to how

geolocation data is structured and included with tweets. From an engineering perspective,

this means developers of systems using tweets must update their systems in response to

such changes, in order to correctly process the data. From a scientific perspective, this

means analysts must be aware of changes in user behavior that can affect how the data is

interpreted.

Updates to platforms can even alter the type of data that is created by users. For

example, the design choice of search interfaces can affect the length of queries that users

issue [Agapie et al., 2013, Belkin et al., 2003]. Another way search interfaces affect queries
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is through the query suggestions that most search engines provide, in the form of “auto-

completion” (while the user is typing) as well as “related queries” that are suggested in

the search results. Search users often use the suggestions to guide and refine their search

process, which can bias the queries that are issued [Kato et al., 2013, Niu and Kelly, 2014].

If a search engine were to alter the query suggestion algorithm, then this may in turn alter

which queries are commonly searched, which could affect models that use search query

volume. As another example, the rapid expansion of Google’s voice search capabilities may

be changing the way people formulate their queries.

Models that use search or social media should be periodically re-estimated on current

data, in order to adjust for inevitable shifts in the data over time. In fact, this was one of the

problems with Google Flu Trends discussed above; the original models were not updated

over time to account for changes in search trends.

In addition to changes within a platform, one should also be aware of variation

across platforms and a system’s sensitivity to the choice of platform. As discussed in

Section 3.3.5, different platforms are used in different ways and by different populations,

and so a model that is built using one platform cannot necessarily be applied to another.

This fact makes web-based surveillance systems particularly reliant on the stability of the

underlying platform. For robust surveillance, a good practice is to compare and combine

multiple systems that use different platforms [Santillana et al., 2015].

Finally, researchers cannot assume long-term reliance on third party data sources.

Organizations change priorities over time, and may limit or change data access. Initial

users of the Twitter streaming API were granted “deca-hose” access (10% data feeds), but

this access was later discontinued for new users in favor of the 1% data feed. Similarly,

Google Flu Trends no longer makes current influenza estimates publicly available.

While these concerns should not preclude the use of these data, researchers should

keep in mind these concerns when making decisions about which data to use, and how to

build research efforts and systems around these data sources.

6.1.4 ADVERSARIAL CONCERNS

Data created from the interactions of a large number of people means that a coordinated

effort by a group can interfere with the quality of data sources [Lazer et al., 2014b]. While it

may not be likely that a group would seek to interfere with a health research project, efforts

aimed at other goals could have the side effect of creating data problems for health efforts.

For example, political campaigns have been observed to create fake tweets to artificially

inflate their popularity in social media [Ratkiewicz et al., 2011]. More commonly, large bot

networks on Twitter post tweets to influence people’s perceptions around political issues. A

common example regarding health is in tobacco. Clark et al. [2016] found that between 70%

and 80% of tweets mentioning e-cigarettes were posted by automated accounts, creating

problems for understanding the perceptions of the general public around e-cigarettes. The
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presence of these accounts complicates the analysis of the resulting data. Kim et al. [2016]

developed a search filter to retrieve e-cigarette related tweets based on keywords, yet criti-

cism of this work observed that failure to exclude tweets from automated accounts distorts

insights derived from the data [Allem and Ferrara, 2016]. Another related example comes

from the state of California’s awareness around e-cigarettes titled “Still Blowing Smoke.” A

large counter-campaign titled “Not Blowing Smoke,” pushed for by pro-e-cigarette advocacy

groups, was referenced more frequently on Twitter [Allem et al., 2016]. The interaction of

these two campaigns complicate the understanding of the underlying public’s perceptions.

In the case of Google Flu Trends (GFT), one could artificially inflate flu estimates by

issuing many flu queries from multiple accounts. While such behavior may not be motivated

a desire to corrupt the GFT estimate, such behavior could be used as part of a marketing

campaign around medical products for influenza. To address this concern, Google does not

share the list of search terms used in the GFT model, and later GFT algorithms attempted

to detect “inorganic” spikes in volume for a particular query, to prevent such spikes from

influencing the model prediction [Copeland et al., 2013].

6.1.5 BIAS

One of the most common concerns in using social data is that a variety of biases can

impact the representativeness of the data [Ruths and Pfeffer, 2014]. Data and analysis bias

issues pervade empirical data analysis research. Understanding the source and factors that

influence bias aids in addressing and avoiding them. We survey some of the most common

sources of bias in using this type of data.

First, since social data originates directly from users, there are a variety of user-

dependent factors that can influence the data. Users lack domain expertise, so discussions

and reports of health issues cannot always be trusted, as discussed in Section 6.1.1. This

can be especially problematic with uncommon illnesses and medications, with which users

may be unfamiliar, as well as very prevalent conditions, with which the user may mistakenly

associate.

The expression of health information can be influenced by the nature of the topic.

Some very common conditions may be underrepresented; users may be unlikely to search for

the common cold. Some conditions may be underrepresented due to privacy concerns, such

as tweets about sexually transmitted diseases. Additionally, external factors can influence

which topics appear in the data. A recent suicide in a small community could lead to

increased rates of discussion of suicide in that area, or a media report on a new disease

could lead users in that area to search for related information. When studying a health

topic, researchers must understand factors that influence reporting of the topic.

Second, user demographics influence collected data [Goel et al., 2012]. A social

media platform may not accurately represent the wider population of interest [Mislove et al.,

2011]. The lack of demographic representation is perceived as a widespread limitation of
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social platforms. However, while the perception of many is that there is a “digital divide”

that characterizes social media, this divide has largely disappeared and now most groups are

well represented. Recent studies have found that 70% of American adults use social media,

and 79% of online American adults use Facebook, the most popular social media platform

[Center, 2017, Duggan et al., 2015, Greenwood et al., 2016]. Additionally, social platforms

reflect users across gender, education levels, incomes, and urban versus rural areas. Where

divides do exist, social media over-represents certain high-risk groups such as young, urban,

and in some cases minority persons. Furthermore, these biases are complementary to the

biases in existing survey methods which skew older and less urban.

Additionally, demographics may influence how information is shared [Wood-Doughty

et al., 2017]. Men may be more likely to search for certain common women’s health topics

because they are unfamiliar with them. Teenagers may be more willing to share health

information because of different opinions about privacy. Different cultural groups may have

practices that bias how and when they talk about health [De Choudhury et al., 2017]. Some

of these issues can be addressed by carefully controlling samples using the techniques out-

lined in Section 4.3.1, as well as awareness of known health biases in different populations.

Big data algorithms may also perform less well for some demographic groups. For

instance, Johnson et al. [2017] found that most geolocation algorithms for social media are

less accurate in rural areas. Furthermore, the bias appears to be part of the algorithm such

that it cannot be corrected by oversampling from less populous locations.

Third, social monitoring is typically passive, and social data typically does not result

from direct questions to users about health. Instead, analyses rely on incidental signals left

by other user activities, such as searches for information about a medication, or discussing

different diseases. As a result, researchers must infer user intent with regards to the health

topic of interest. For example, when a person searches for “flu symptoms,” are they search-

ing because they have the flu, or are they trying to learn about flu in preparation for the

upcoming flu season? When someone writes “I need a cigarette,” does this mean that they

are a smoker, or is this statement a colloquialism?

Fourth, the method of data collection influences the analytical results. While some

platforms allow for an unbiased collection of data, most require collection techniques that

bias the data (see Section 3.5 for information on data collection). For example, collecting

all tweets that use a specific keyword may omit related messages without the keyword.

Facebook allows the collection of public messages, but most messages on a topic may be

private. A host of factors beyond this, some beyond a researcher’s knowledge and control,

can influence data. Some common biases in social media data collection are described in

Chunara et al. [2017]. Data validation mechanisms, such as ensuring data conforms to

common sense expectations, help safeguard researchers from these types of bias.

Finally, analytical methods can introduce bias. This is especially true of statistical,

machine learning, and natural language processing algorithms, which can make non-random
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errors. There has recently been widespread discussion about Fairness, Accountability, and

Transparency (FAT) in the machine learning community.1 For examples, see Caliskan et al.

[2017], Hardt et al. [2016], Misra et al. [2016]. While not unique to social data, we note this

concern because of the widespread use of these methods in social monitoring.

In the face of these numerous sources of bias, it can be difficult to believe that social

data can successfully produce meaningful health information. Yet numerous studies have

repeatedly demonstrated the power of social data in health analysis. The key to success is

proper validation (Sections 4.1.4 and 4.2.1), ensuring that results match expectations and

information derived from traditional health data sources.

Contextualization of these biases and comparison to other data types places these

concerns in perspective. Consider telephone surveys, a bedrock of modern public health

research. While results from telephone surveys comprise the primary data source for nu-

merous public health topics, they also suffer from numerous biases [Blumberg and Luke,

2007, Iannacchione, 2011, Kempf and Remington, 2007]. Telephone surveys similarly suffer

from sampling bias, the most recent issue being landline versus mobile phones. Other issues

include differences in response rates, biases in who responds, how questions are phrased and

framed, what order questions are asked, social desirability bias, and outright lying of re-

spondents. Nevertheless, these concerns do not exclude telephone surveys as a data source.

To the contrary, proper techniques correct these issues and allow us to derive useful data

from these surveys. The same is true of social data [Dredze et al., 2015].

6.2 ACTIONABILITY CONCERNS

We now turn to actionability of public health information obtained from social monitoring

systems. What can social media systems be used for? How trustworthy must they be to be

actionable? What happens when these systems fail?

We will begin by summarizing how social media systems are currently used by public

health and healthcare practitioners. We then discuss the reliability and utility of intelli-

gence derived from these systems, and briefly discuss how this intelligence can be used for

interventions and decision-making.

6.2.1 CURRENT USE BY PRACTITIONERS

Social monitoring provides a flexible and effective tool for research, one that has resulted

in numerous publications on a variety of health topics. While some studies seek to repli-

cate existing capabilities using social monitoring, many report novel research findings that

contribute to the health literature. To date, this has been the primary way in which social

monitoring has impacted the health community.

1http://www.fatml.org/
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In some areas, research has matured to the point that current practices are impacted.

While public health practitioners do not always share information on their use of social

monitoring, we provide a few examples.

Several tools exist for influenza surveillance using social data, and public health offi-

cials have begun to incorporate these tools into their decision making processes. Influenza

policy and decisions are often made by state and local health departments based on a

variety of surveillance signals. Several of these agencies review websites that use social

monitoring technologies, such as Google Flu Trends [Ginsberg et al., 2009], HealthTweets

[Dredze et al., 2014], HealthMap [Freifeld et al., 2008], Sickweather (sickweather.com),

and the HHS’s Now Trending Challenge Site (nowtrending.hhs.gov), to name a few.

We reviewed examples of public health departments using social monitoring for food

safety (Section 5.3.2). The Chicago effort is ongoing (www.foodbornechicago.org). An

analysis of the Las Vegas system found “unexpected benefits, including the identification of

venues lacking permits, contagious kitchen staff, and fewer customer complaints filed with

the Las Vegas health department” [Sadilek et al., 2017].

Social monitoring for disaster response has gained traction. Ushahidi (ushahidi.

com), Humanity Road (humanityroad.org), and other organizations monitor social media

during disasters to cull actionable information in real-time, as well as communicate situation

updates to people in impacted regions. The American Red Cross operates a Social Media

Digital Operations Center2 for similar purposes.

Tobacco Watcher [Cohen et al., 2015] provides media surveillance for tobacco news

to tobacco control groups.

These are just a few examples of how social monitoring techniques already contribute

to public health research and policy.

6.2.2 RELIABILITY OF WEB INTELLIGENCE

The actionability of public health systems based on social data is limited by the quality of

the data and the reliability of the systems’ predictions. Data reliability is particularly im-

portant for disease surveillance, where action must be taken promptly to address epidemics.

A number of negative consequences can arise from poor predictions of epidemics.

Early detection of disease outbreaks is critical to mitigating the spread and effect of

the outbreak. Digital systems failed to detect major public health crises in recent years,

including the 2009 swine flu outbreaks in North America [Cook et al., 2011], and the 2014

ebola outbreak in West Africa [Leetaru, 2014]. These are examples of type II errors—failing

to detect something that happened. While early detection is not the only goal of disease

surveillance, failure to do so can cast doubt on the utility of such surveillance systems.

2http://www.redcross.org/news/press-release/The-American-Red-Cross-and-Dell-Launch-

First-Of-Its-Kind-Social-Media-Digital-Operations-Center-for-Humanitarian-Relief

PREPRINT



86 6. LIMITATIONS AND CONCERNS

While failing to detect an outbreak has clear consequences, there are also negative

consequences of predicting an epidemic that fails to emerge (a type I error). Taking unnec-

essary action to prevent an epidemic, such as undertaking mass immunization, can be costly

[Krause, 2006], and campaigns that are perceived as needlessly “alarmist” can erode public

trust [Doshi, 2009]. As described earlier, this type of error occurred when Google Flu Trends

predicted a record-breaking severe flu season in late 2012. The result was widespread media

coverage with statements such as, “Google searches for flu symptoms are at an all-time high.

Is it time to panic?” [Boesler, 2013, Oremus, 2013]. The reputation of Google Flu Trends

was ultimately hurt after the panic was determined to be warrantless, with headlines such

as “Why Google Flu Trends Will Not Replace the CDC Anytime Soon” [Resnick, 2013],

and led to more critical inspection by the academic community [Lazer et al., 2014b].

To be clear, these errors happen with traditional surveillance, and are not necessarily

worsened by digital surveillance. However, traditional systems are generally well-understood

and have been carefully validated, allowing practitioners to appropriately factor in the

uncertainty of these systems. There are often validation mechanisms in place around tra-

ditional surveillance systems. For example, when areas of the United States report large

increases in influenza infection rates, the CDC can work with the reporting clinics to vali-

date the reported increase. In order for digital surveillance to be equally actionable, more

research will be needed to quantify the reliability and uncertainty of these systems [Grose-

close and Buckeridge, 2017].

Validation of social data is still an ongoing research problem. Blouin-Genest and

Miller [2017] note that the use of “unofficial” data from social media creates “problems of

standardization, control and verification.” Bodnar and Salathé [2013] expressed concern

with how social media influenza surveillance is validated, finding that systems trained

on irrelevant or even randomly generated data can score well under standard validation

metrics. This study highlights the need to correct for spatial and temporal autocorrelation

(discussed in Section 4.1.4).

Many researchers argue that social monitoring should be done in combination with

traditional monitoring, rather than relying on one or the other [Simonsen et al., 2016].

As stated by Salathé [2016], “Despite traditional epidemiology’s shortcomings, it is ulti-

mately the generator of ground-truth data against which novel, digital systems need to

be validated. It will be prudent of the public health community to build on the strengths

of both systems—veracity in traditional epidemiology and velocity and variety in digital

epidemiology—in conjunction.”

6.2.3 UTILITY OF WEB INTELLIGENCE

Another issue to consider when using social data is how much utility such data offers

beyond traditional data. One of the most common uses of social monitoring for public

health is the surveillance of influenza in the United States, but as pointed out by Lazer
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et al. [2014b], simple autoregressive models (Section 4.1.2) using only traditional data are

already extremely accurate, so even if social data is perfectly reliable, there is little room

for improvement. The CDC publishes influenza prevalence with a one-week delay in the

U.S., and while this delay is too long for some tasks (e.g., hospital crowding preparation

[Dugas et al., 2012]), the system is sufficiently fast for many purposes. In New York City,

influenza prevalence is estimated on a daily basis, so there is little need for realtime social

media data [Olson et al., 2013]. Work by Paul et al. [2014] took a different approach to

evaluation. Rather than showing correlations between social media data and influenza rates,

they demonstrated that adding Twitter data to a forecasting system that already makes

use of available traditional CDC surveillance data can improve forecast accuracy more than

using either type of data alone.

This does not mean that there is no utility in using social media for influenza

surveillance—but there is much more utility in locations that do not conduct formal in-

fluenza surveillance, or for which influenza reports are delayed by more than one or two

weeks. For example, official influenza reports for South Africa are delayed by at least one

month, and data from Twitter can offer significant improvements [Paul et al., 2015a]. Social

media data can benefit influenza surveillance in fine-grained locations such as hospitals, for

which real-time surveillance is important for planning [Broniatowski et al., 2015], and mass

gatherings, at which diseases are not formally monitored [Yom-Tov et al., 2014a].

Moreover, while up-to-date surveillance systems exist for some infectious diseases

such as influenza, there are public health issues for which data is severely out of date.

For example, the prevalence of behaviors such as smoking is typically estimated through

surveys, and these estimates can take a year or more to compile. For this reason, Ayers

et al. [2014a] argue that there is more utility in using social media data to study behavioral

medicine than in disease surveillance.

More generally, the scientific literature increasingly includes published studies relying

on social data. Their impact on health knowledge will be determined through the accumu-

lation of supporting evidence, and through meta-studies that can contextualize results from

social data in the larger collection of evidence.

6.2.4 DECISIONS AND INTERVENTIONS

Even if social media systems can deliver novel, reliable information, there is a challenge

in determining how to act on this information. Policy makers and public health officials

will need to determine the extent to which web-based data sources should be trusted and

incorporated into decision models. In areas where social monitoring systems deliver comple-

mentary information, such as influenza surveillance, their inclusion in ongoing surveillance

will rely on combining multiple information sources in the decision making process. In areas

without existing empirical data, where social monitoring systems deliver new information,

careful validation and evaluation will be necessary to determine the extent to which the
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information can be relied on. As discussed in Section 6.2.2, the long-term use of these sys-

tems will depend on their use and validation over coming years to better understand how

they perform during health crises.

In addition to decisions at the population level, another type of decision involves

pursuing interventions with individuals. For example, if algorithms can infer that a person

has poor mental health [De Choudhury et al., 2013b], should something be done to offer the

person support? Some simple, non-controversial interventions are in place on the web: most

major search engines in the United States, for example, will provide the phone number to

the National Suicide Prevention Lifeline if a person searches for suicide. However, people

might react negatively if such an intervention occurred for non-obvious reasons, such as

if a user’s long-term behavior was suggestive of suicide risk, even though the user may

not have explicitly searched for suicide. How and when to perform such interventions are

difficult questions that will need to be addressed. The vast majority of public health research

described in Chapter 5 does not involve any type of individual intervention, so these issues

have not been well explored.

6.3 ETHICAL CONSIDERATIONS

Using social data to study health raises many ethical challenges [Benton et al., 2017, boyd

and Crawford, 2012, Conway, 2014, McKee, 2013, Mikal et al., 2016, Vayena et al., 2015,?].

Two big ethical concerns arise when monitoring social data for public health: (1) users’

data, even if public, are used in ways the users may not have intended, and (2) health data

is particularly sensitive information.

The short response to these concerns is that the data under consideration are public

(in general), and users agree to share their public data under the terms of service when

using social media platforms. Under Institutional Review Board (IRB) guidelines, which

govern research ethics in the United States, research can generally be done with social data

with an IRB exemption as long as the data are public and there is no interaction with users

[Buchanan and Ess, 2009].

However, this response is simplistic. In reality, IRB exemptions of public data were

never intended to cover this type of research. Furthermore, while the analyzed data may

be public, many users do not behave in a way that suggests they are aware that their data

could be shown to a large audience. This is not to say that these guidelines are necessarily

wrong, but this is an issue that should be explicitly decided in the community, rather than

relying on outdated protocols [O’Connor, 2013].

Therefore, standard IRB procedures should be treated as a starting point, but not

an end point in the conversation. Fortunately, the fields of medicine and public health have

a long history of ethics research, and current ethics protocols have grown out of decades

of research. The community can therefore build off of this experience to develop guidelines
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for working with social data. A thorough summary of the community’s current attitudes

towards ethics of social media research is provided by Golder et al. [2017].

Below, we describe in more depth some of the specific ethical concerns with social

monitoring, as well as some guidelines for navigating these concerns. For a fuller treatment

on relevant issues, we suggest Conway [2014], and see Benton et al. [2017] for a practical

guide on research protocols.

6.3.1 PUBLIC DATA

One of the most difficult ethical issues to pin down with social monitoring, particularly for

health, is the degree to which data is treated as public data [McKee, 2013]. This question

is crucial because research of public data typically does not require informed consent or

a full IRB review, and current IRB guidelines treat public social media data this way.

However, the issue is more complicated than current IRB guidelines suggest. Users who

create public data may not be aware that their data is public, or may not want their public

data used for research. Reliance on the complex terms of service of social media platforms

may be insufficient. Many social platforms, especially Facebook, have been criticized for

having unclear privacy management systems [Liu et al., 2011]. There are a number of ways

in which the boundaries between public and private data are unclear in the context of

research.

First, users may simply be unaware that their data is publicly accessible, or if they are

aware in general, this reality may not be present when they post some content. For example,

if a user replies to another user’s tweet, they may compose their message intending for a

direct conversation, forgetting that the conversation is publicly accessible. Alternatively,

users may rely on the “hidden in plain sight” approach, where their messages are public

but few people actually see them. There are numerous cases of users who post information

to Twitter that they consider private, with the assumption that the people from whom

they want to hide the information would never check Twitter.

This same is true of discussion forums and other online communities. Users may have

expectations of privacy within the community, thinking that the general public is unlikely

to access the forum. Many of these online communities feel private, and users may behave

as if they are in a private environment, even if technically the community is accessible to

outsiders [Bromseth, 2002].

Second, even if users do not expect privacy in general, they may not wish for their

data to be used for all possible purposes. A user may not mind a large group of people

viewing their post, but may feel differently if the message is shared on the evening news,

or published in an academic article. Online communities can react negatively to having

data used for research [Hudson and Bruckman, 2004], although how web users feel about

research in general remains an open question. Mikal et al. [2016] conducted interviews with

Twitter users with a diagnosed history of depression and found that they held a relatively
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positive view of using public Twitter data for mental health purposes, provided that results

on individuals were aggregated in the analysis.

While many instances of public outrage against this type of research are based on

uninformed views of how data is collected, protected, and used, these concerns form some

of the primary motivations for informed consent in human subjects research.

Finally, a particularly difficult dilemma arises when public data can be used to infer

private information, especially private health information. For example, statistical models

and machine learning techniques can be used to infer that a web user has an illness based

on the user’s public data, even if the user did not share this information explicitly. Private

health information, which has legal protections in the United States and elsewhere, can be

inferred from data that is publicly available [Horvitz and Mulligan, 2015]. Numerous papers

have demonstrated that analysis of social media messages from a user can be used to detect

mental health conditions [Coppersmith et al., 2014b, De Choudhury et al., 2013b, Prieto

et al., 2014]. These types of inferences fall into a gray area both legally and ethically.

For these reasons, there are strong arguments for treating public data as private, at

least in many ways. Even though it may often be reasonable to waive consent from users to

use their public data [Hudson and Bruckman, 2004], such research should still be treated

as human subjects research, and steps should be taken to protect the participants, such as

securing their data [Zimmer, 2010] and putting restrictions on distribution and use [Benton

et al., 2017]. Even still, we must seek policies that are not overly restrictive and allow for

continued research using social data, balancing privacy concerns and respect for human

subjects with the goals of sharing knowledge and making research reproducible. No doubt,

this area will continue to be the subject of considerable debate for some time.

6.3.2 USER INTERACTION

Ethical considerations and research protocols change when researchers interact with social

media users. If interactions or interventions are involved, then social media research likely

requires full IRB review [Benton et al., 2017].

For studies that require the direct recruitment of participating social media users

(e.g., [De Choudhury et al., 2014a]), the protocols of IRB review and informed consent are

the same as traditional medical research and are therefore relatively straightforward.

Less straightforward is the protocol for interacting with users at a large scale. A well-

known example of this scenario is the Facebook emotional contagion study by Kramer et al.

[2014]. This study involved hundreds of thousands of Facebook users whose news feeds were

altered to contain more or fewer messages expressing positive or negative emotions, and

different users were shown different effects. Even though the study was reviewed for ethical

concerns, the publication of the study was met with public outrage as many Facebook users

felt manipulated, and did not wish to be research subjects. This spurred a debate in the

research community as to the ethics of the study, with strong disagreements as to whether
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the research protocols were ethical. One of the central points of contention was whether

the researchers should have attempted to obtain consent from the Facebook users, or if the

existing terms of service agreement, which allow for this type of testing, is sufficient.

There is no clear ethical answer as to how to conduct such a study. While many

Facebook users were upset, not all academics agreed that the study was unethical. For

example, Meyer and Chabris [2015] argue that all users are inherently participating in an

experiment by virtue of participating in a social networking platform with unknown effects,

and therefore the ethical thing to do is to conduct such research to understand the effect of

these platforms. They argue that informed consent was right to be waived for this particular

study, because the risk to participants was low and the study could not have been done in

the same way if consent was required.

In short, novel uses of social data for health are posing complex ethical questions on

data use, the answers to which remain the subject of significant debate. Simple answers,

such as “the data is public anyway” are unconvincing given the complexity of many data sets

and use cases. Researchers in this area must remain cognizant of these ethical considerations

in the design of their studies, and should consistently re-evaluate study goals and protocols

as they learn more about their data, and as the conversation in the community progresses.

6.3.3 GUIDELINES FOR ETHICAL RESEARCH

With the above concerns in mind, we offer some practical guidelines for conducting research

with social media data. These suggestions largely follow the recommendations of Benton

et al. [2017], who synthesize best practices from the research community.

• Social media research should be discussed with Institutional Review Boards (IRBs).

IRB feedback can ensure that research is done in the best way possible, and can

determine when a study must receive a full IRB approval. IRBs can also suggest

safeguards and modifications to research protocols to ensure compliance with best

practice.

• In published studies, researchers should clearly state what data was used, whether it

was public, if permission was obtained from users, and if the study had IRB approval.

• Obtain informed consent whenever possible. While this may be unrealistic in most

cases, some data collection settings do provide opportunities for obtaining user con-

sent. Researchers who always assume that consent is unnecessary will miss data set-

tings where it can be collected.

• Safeguard sensitive data. Just because data originates from a public source, does

not mean that its collection does not introduce sensitivities. For example, filtering

Twitter data to only those messages that indicate suicide attempts or diagnoses of

sexually transmitted diseases creates a corpus that contains sensitive information.
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This data can be protected by restricting access to the data to only those with proper

training and a need to access the data, and redistribution can require a data use

agreement. Additionally, anonymization could be considered for further protection.

Finally, researchers should respect requests to remove data.

• Avoid publishing personally identifiable information (PII), which can include meta-

data such as usernames and location data. This can include direct quotes from data

(e.g., the text of a tweet), since PII can be found by searching the quote on a search

engine. Additionally, re-publishing such content without modification may be a viola-

tion of the International Committee of Medical Journal Editors [1997] ethics standards

and the Association of Internet Researchers [Markham and Buchanan, 2012]. When

exact quotes of messages are necessary, researchers should use data that is already

well-known from public figures or celebrities [Eisenstein, 2013].

• When possible, data—particularly datasets that will be published or shared with other

researchers—should be aggregated. For example, if conducting influenza surveillance

with Twitter data, it may only be necessary to share the number of influenza-related

tweets per day, rather than the tweets themselves.

• Linking data across public sites can reveal information that users did not intend to

share. For example, a user may create a public persona on Twitter, and a less identifi-

able account on a mental health discussion forum. Linking these accounts may assign

personal health statements, meant to be confidential, to a public persona. Studies

that involve linking should carefully consider the ramifications of such practices and

obtain IRB approval.

These suggestions are intended as rules of thumb, and are just some of the many

possible good practices that can be considered. For more comprehensive views on ethics of

using social media for public health, see Rivers and Lewis [2014], Conway [2014], Vayena

et al. [2015], Mikal et al. [2016], and Crowcroft et al. [2017].
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C H A P T E R 7

Looking Ahead

When we tell people about this kind of research, we often get questions like, “what happens

when Twitter shuts down?” It’s true that any particular platform like Twitter is unlikely

to stick around forever (and one could be forgiven for having the impression that social

monitoring requires Twitter specifically, given its dominance in this field!), but that doesn’t

mean that this type of research hinges on the availability of any particular platform. While

specific products come and go, the general form of a technology tends to stick around once

it’s introduced. Search and email are still ubiquitous, even though most of the popular

search engines and email clients of twenty years ago are no longer around. People may no

longer use AOL Instant Messenger (AIM), but there are now numerous popular messaging

platforms. In the same vein, social networks, (micro)blogs, and online reviews will stick

around in some form or another. Social data isn’t going anywhere.

Likewise, there’s no reason to think that social monitoring is a temporary fad that

will lose traction. Its utility has been demonstrated enough times in enough ways that it is

clear that this type of data has something powerful to offer, despite the challenges ahead.

We are already starting to see social monitoring move beyond proof-of-concept research and

be integrated with real systems, as reviewed in Section 6.2.1. We’ve already learned much

about health behaviors from this research. While much of the research described in this book

is not yet ready to be adopted into practice, that will undoubtedly improve with continued

progress and validation of these techniques. Social monitoring won’t replace traditional

forms of monitoring, but when combined together, their complementary strengths and

weaknesses can play off each other, filling in knowledge gaps and reducing the time and

cost of collecting information.

What will social monitoring for public health look like in the coming years? We make

three general predictions.

First, we expect the community to branch out to more diverse areas of public health,

shifting priorities to areas with the highest data needs. Throughout the book, we’ve pointed

out areas that we think have had too much or too little attention in this community. Flu

surveillance has been the most popular public health application for social monitoring—

for a lot of good reasons, including high prevalence, high data availability, and established

metrics and baselines for validation—but as we pointed out in Section 6.2.3, social data

only has so much to offer when you consider that national flu surveillance is already very

good. Disease surveillance will benefit from social data more in locations and populations

without robust surveillance, and for diseases without so many resources.
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Beyond disease surveillance, we think there is especially high potential in social mon-

itoring for problems in behavioral medicine and mental health, which are prime targets

for social monitoring. These are issues that affect huge numbers of people but have se-

rious limitations in current monitoring, and depend on everyday attitudes and behaviors

that are commonly shared in social data. One area where we especially hope to see more

social monitoring is gun violence in the United States (Section 5.3.5), which is a leading

cause of death yet there are huge holes in our understanding of this problem, thanks to a

lack of standardized monitoring resources. This is a case where social data, on top of the

recognition of this type of violence as a public health issue, could make a huge difference.

Second, we are going to see major advancements in the underlying algorithms and

technologies that support social monitoring. In the past decade, there have been huge

improvements in tasks that fall in the domain of artificial intelligence: things like under-

standing and transcribing speech, recognizing people and objects in photos, and translating

from one language to another. Advances in machine learning, natural language processing,

and computer vision are driving these improvements, and it’s happening at a faster pace

than many expected. These improvements are not just in experiments out of public view;

consumer products like Siri and Alexa work noticeably better than even a few years ago.

A major catalyst of these improvements has been a surge of new research in “deep

learning,” a type of machine learning that uses much larger and more complex models

than the types of models described in Section 4.1.1. While many of the ideas of deep

learning are rooted in neural network models that have been around for decades, recent

improvements in algorithms and computational processing have made these ideas more

practical, leading to renewed interest and new discoveries in the capabilities of these models.

The authors of this book, who primarily work in machine learning and natural language

processing, can attest that there’s been a huge increase in the amount of deep learning

research in these disciplines just in the past few years. So many people are interested in

deep learning, including academic and non-academic researchers and practitioners, that

some computer science conferences are even running into problems of overcrowding and

sold out registration—problems historically unheard of at technical academic gatherings.

How will these advancements relate to social monitoring? Since social data largely

comes in the form of what people say, improvements in automated understanding of human

language will lead to more accurate analysis of the data. New algorithms will be better

at handling some of the difficulties we’ve described with text data, such as ambiguity,

colloquialisms, and sarcasm (though not perfectly, since even humans struggle with these

challenges), and we will have better tools for extracting information like opinions toward

vaccines and side effects of drugs from online messages. Media types like images, audio, and

video will become more practical as large-scale data sources, as technology gets better at

automatically parsing and understanding these types of data. In general, deep learning can

improve the ability to make inferences and predictions over traditional statistical models,
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so we can expect to have more accurate models for detection and forecasting of events like

outbreaks.

Third, for all the progress made in the past decade, there remains a wide gap between

what is possible with computational methods and the technical skillset common in public

health. While computer scientists routinely build algorithms that process millions of mes-

sages and produce complex visualizations, public health practitioners often don’t even have

a way of downloading the right data. Making these methods accessible to non-technical

researchers remains a difficult problem. We hope to see more efforts to do so, including

better training and tutorials, as well as more user-friendly computational tools.

While we expect to see these trends in social monitoring, we’re more excited by what

we can’t predict. Consider the rapid timeline in which this field has popped up. It was less

than 20 years ago that researchers first started deeply looking at health information on

the web. It’s been 11 years since the first demonstration of social monitoring for health

(flu surveillance by Eysenbach [2006]), and 9 years since the launch of Google Flu Trends.

Social monitoring started picking up steam as an area of computer science research about

6–8 years ago, and most of the early work (and even much of the current work) was proof-

of-concept in nature. The U.S. federal government started actively promoting this type of

health monitoring 3–4 years ago (Section 2.2.2), and the first clear successes of real social

monitoring systems were documented 2–3 years ago, when social data was able to alert

health inspectors to food safety problems (Section 5.3.2). It’s hard to predict where this

field will be in 10 years when you consider that this is further away in time than when most

of this pioneering work was done.

Whatever happens, it’s clear that social data is transforming how public health can

be done. As we discovered while writing this book, a lot of creative work is being done in

almost every area we can list. It’s amazing what has been achieved so far, and as this field

continues to advance, we are excited to see the impact it will have on our collective health

and wellbeing. Social monitoring will change public health research, and we look forward

to participating in the revolution.
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Crawley, A. W., Wójcik, O. P., Olsen, J., Brownstein, J. S., and Smolinski, M. S. (2014).

Flu Near You: Comparing crowdsourced reports of influenza-like illness to the CDC

outpatient influenza-like illness surveillance network, October 2012 to March 2014. In

Council of State and Territorial Epidemiologists Annual Conference.

PREPRINT



110 7. LOOKING AHEAD

Crooks, A., Croitoru, A., Stefanidis, A., and Radzikowski, J. (2013). #earthquake: Twitter

as a distributed sensor system. Transactions in GIS , 17(1), 124–147.

Crowcroft, J., Haddadi, H., and Henderson, T. (2017). Responsible Research on Social

Networks: Dilemmas and Solutions. Oxford University Press, United Kingdom.

Culotta, A. (2010). Towards detecting influenza epidemics by analyzing Twitter messages.

In ACM Workshop on Soc.Med. Analytics.

Culotta, A. (2013). Lightweight methods to estimate influenza rates and alcohol sales

volume from Twitter messages. Language Resources and Evaluation, 47(1), 217–238.

Culotta, A. (2014). Estimating county health statistics with Twitter. In Conference on

Human Factors in Computing Systems (CHI).

Culotta, A., Kumar, N. R., and Cutler, J. (2015). Predicting the demographics of Twitter

users from website traffic data. In AAAI Conference on Artificial Intelligence (AAAI).

Curran, J. W., Jaffe, H. W., et al. (2011). AIDS: the early years and CDC’s response.

MMWR Surveill Summ, 60(Suppl 4), 64–9.

Curtis, B., Alanis-Hirsch, K., Kaynak, O., Cacciola, J., Meyers, K., and McLellan, A. T.

(2015). Using Web searches to track interest in synthetic cannabinoids (a/k/a ‘herbal

incense’). Drug Alcohol Rev , 34(1), 105–108.

Da’ar, O. B., Yunus, F., Md Hossain, N., and Househ, M. (2016). Impact of Twitter

intensity, time, and location on message lapse of bluebird’s pursuit of fleas in Madagascar.

J Infect Public Health.

Dai, H. and Hao, J. (2017). Mining social media data on marijuana use for post traumatic

stress disorder. Computers in Human Behavior , 70, 282 – 290.

Dai, H., Lee, B. R., and Hao, J. (2017). Predicting asthma prevalence by linking social

media data and traditional surveys. The ANNALS of the American Academy of Political

and Social Science, 669(1), 75–92.

Das, L., Mohan, R., and Makaya, T. (2014). The bid to lose weight: impact of social media

on weight perceptions, weight control and diabetes. Curr Diabetes Rev , 10(5), 291–297.

Dashti, S., Palen, L., Heris, M., Anderson, K., Anderson, S., and Anderson, J. (2014).

Supporting disaster reconnaissance with social media data: A design-oriented case study

of the 2013 Colorado floods. In Conference on Information Systems for Crisis Response

and Management (ISCRAM).

Davison, K. (1996). The quality of dietary information on the world wide web. Clinical

Performance and Quality Health Care, 5(2), 64–66.

PREPRINT



111

De Choudhury, M. (2013). Role of social media in tackling challenges in mental health. In

Workshop on Socially-Aware Multimedia.

De Choudhury, M. (2014a). Can social media help us reason about mental health? In

International Conference on World Wide Web (WWW), pages 1243–1244.

De Choudhury, M. (2014b). You’re #happy, i’m #happy: Diffusion of mood expressions

on Twitter. In HCI Korea Conference.

De Choudhury, M. (2015). Anorexia on Tumblr: A characterization study. In ACM Digital

Health Conference.

De Choudhury, M. and De, S. (2014). Mental health discourse on reddit: Self-disclosure,

social support, and anonymity. In International Conference on Weblogs and Social Media

(ICWSM).

De Choudhury, M. and Gamon, M. (2013). Predicting depression via social media. In

International Conference on Weblogs and Social Media (ICWSM).

De Choudhury, M. and Kiciman, E. (2017). The language of social support in social media

and its effect on suicidal ideation risk. In International Conference on Weblogs and Social

Media (ICWSM). AAAI.

De Choudhury, M., Counts, S., and Gamon, M. (2012). Not all moods are created equal! ex-

ploring human emotional states in social media. In International Conference on Weblogs

and Social Media (ICWSM).

De Choudhury, M., Counts, S., and Horvitz, E. (2013a). Major life changes and behav-

ioral markers in social media: case of childbirth. In Conference on Computer Supported

Cooperative Work and Social Computing (CSCW), pages 1431–1442. ACM.

De Choudhury, M., Counts, S., and Horvitz, E. (2013b). Predicting postpartum changes in

emotion and behavior via social media. In Conference on Human Factors in Computing

Systems (CHI), pages 3267–3276, New York, NY, USA.

De Choudhury, M., Counts, S., and Horvitz, E. (2013c). Social media as a measurement

tool of depression in populations. In Web Science Conference, pages 47–56. ACM.

De Choudhury, M., Counts, S., Horvitz, E. J., and Hoff, A. (2014a). Characterizing and pre-

dicting postpartum depression from shared Facebook data. In Conference on Computer

Supported Cooperative Work and Social Computing (CSCW), pages 626–638.

De Choudhury, M., Morris, M. R., and White, R. W. (2014b). Seeking and sharing health

information online: Comparing search engines and social media. In Conference on Human

Factors in Computing Systems (CHI), pages 1365–1376.

PREPRINT



112 7. LOOKING AHEAD

De Choudhury, M., Sharma, S., and Kiciman, E. (2016a). Characterizing dietary choices,

nutrition, and language in food deserts via social media. In Conference on Computer Sup-

ported Cooperative Work and Social Computing (CSCW), pages 1157–1170, New York,

NY, USA. ACM.

De Choudhury, M., Kiciman, E., Dredze, M., Coppersmith, G., and Kumar, M. (2016b).

Discovering shifts to suicidal ideation from mental health content in social media. In

Conference on Human Factors in Computing Systems (CHI).

De Choudhury, M., Sharma, S. S., Logar, T., Eekhout, W., and Nielsen, R. C. (2017).

Gender and cross-cultural differences in social media disclosures of mental illness. In

Conference on Computer Supported Cooperative Work and Social Computing (CSCW),

pages 353–369, New York, NY, USA. ACM.

de Quincey, E. and Kostkova, P. (2010). Early warning and outbreak detection using social

networking websites: The potential of Twitter. In International Conference on Electronic

Healthcare.

Deiner, M., Lietman, T., McLeod, S., Chodosh, J., and Porco, T. (2016). Surveillance tools

emerging from search engines and social media data for determining eye disease patterns.

JAMA Ophthalmology , 134(9), 1024–1030.

Delir Haghighi, P., Kang, Y.-B., Buchbinder, R., Burstein, F., and Whittle, S. (2017).

Investigating subjective experience and the influence of weather among individuals with

fibromyalgia: A content analysis of Twitter. JMIR Public Health Surveillance, 3(1), e4.

Deluca, P., Davey, Z., Corazza, O., Di Furia, L., Farre, M., Flesland, L. H., Mannonen,

M., Majava, A., Peltoniemi, T., Pasinetti, M., Pezzolesi, C., Scherbaum, N., Siemann,

H., Skutle, A., Torrens, M., van der Kreeft, P., Iversen, E., and Schifano, F. (2012).

Identifying emerging trends in recreational drug use; outcomes from the Psychonaut

Web Mapping Project. Prog. Neuropsychopharmacol. Biol. Psychiatry , 39(2), 221–226.

Denecke, K., Krieck, M., Otrusina, L., Smrz, P., Dolog, P., Nejdl, W., Velasco, E., et al.

(2013). How to exploit Twitter for public health monitoring. Methods Inf Med , 52(4),

326–339.

Deodhar, S., Chen, J., Wilson, M., Bisset, K., Lewis, B., Barrett, C., and Marathe, M.

(2015a). EpiCaster: An integrated web application for situation assessment and forecast-

ing of global epidemics. In ACM Conference on Bioinformatics, Computational Biology

and Health Informatics.

Deodhar, S., Chen, J., Wilson, M., Soundarapandian, M., Bisset, K., Lewis, B., Barrett,

C., and Marathe, M. (2015b). Flucaster: A pervasive web application for high resolution

PREPRINT



113

situation assessment and forecasting of flu outbreaks. In 2015 International Conference

on Healthcare Informatics, pages 105–114.

Desai, R., Hall, A. J., Lopman, B. A., Shimshoni, Y., Rennick, M., Efron, N., Matias, Y.,

Patel, M. M., and Parashar, U. D. (2012). Norovirus disease surveillance using Google

Internet query share data. Clin. Infect. Dis., 55(8), e75–78.

Diaz-Aviles, E. and Stewart, A. (2012). Tracking Twitter for epidemic intelligence: Case

study: EHEC/HUS outbreak in Germany, 2011. In Web Science Conference.

Digrazia, J., McKelvey, K., Bollen, J., and Rojas, F. (2013). More tweets, more votes: social

media as a quantitative indicator of political behavior. PLoS ONE , 8(11), e79449.

Doan, S., Vo, B. K. H., and Collier, N. (2012). An analysis of Twitter messages in the 2011

Tohoku Earthquake. In Lecture Notes of the Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering , volume 91 LNICST, pages 58–66.

Doan, S., Ritchart, A., Perry, N., Chaparro, D. J., and Conway, M. (2017). How do you

#relax when you’re #stressed? a content analysis and infodemiology study of stress-

related tweets. JMIR Public Health Surveillance, 3(2), e35.

Doshi, P. (2009). Calibrated response to emerging infections. BMJ , 339, b3471.

Dredze, M. (2012). How social media will change public health. IEEE Intelligent Systems,

27(4), 81–84.

Dredze, M., Paul, M. J., Bergsma, S., and Tran, H. (2013). Carmen: A Twitter geoloca-

tion system with applications to public health. In AAAI Workshop on Expanding the

Boundaries of Health Informatics Using AI (HIAI).

Dredze, M., Cheng, R., Paul, M., and Broniatowski, D. (2014). Healthtweets.org: A platform

for public health surveillance using Twitter. In AAAI Workshop on the World Wide Web

and Public Health Intelligence.

Dredze, M., Broniatowski, D. A., Smith, M., and Hilyard, K. M. (2015). Understand-

ing vaccine refusal: Why we need social media now. American Journal of Preventive

Medicine.

Dredze, M., Osborne, M., and Kambadur, P. (2016a). Geolocation for Twitter: Timing

matters. In North American Chapter of the Association for Computational Linguistics

(NAACL) (short paper).
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Lee, H., McAuley, J. H., Hübscher, M., Allen, H. G., Kamper, S. J., and Moseley, G. L.

(2016). Tweeting back: predicting new cases of back pain with mass social media data.

Journal of the American Medical Informatics Association, 23(3), 644.

PREPRINT



128 7. LOOKING AHEAD

Lee, H. R., Lee, H. E., Choi, J., Kim, J. H., and Han, H. L. (2014a). Social media use,

body image, and psychological well-being: a cross-cultural comparison of Korea and the

United States. J Health Commun, 19(12), 1343–1358.

Lee, J. L., DeCamp, M., Dredze, M., Chisolm, M. S., and Berger, Z. D. (2014b). What are

health-related users tweeting? A qualitative content analysis of health-related users and

their messages on Twitter. Journal of Medical Internet Research, 16(10), e237.

Leetaru, K. (2014). Why big data missed the early warning signs of ebola.

http://foreignpolicy.com/2014/09/26/why-big-data-missed-the-early-

warning-signs-of-ebola/. Accessed 2015-07-15.

Leggatt-Cook, C. and Chamberlain, K. (2012). Blogging for weight loss: personal account-

ability, writing selves, and the weight-loss blogosphere. Sociol Health Illn, 34(7), 963–977.

Lentine, K. L., Schnitzler, M. A., Abbott, K. C., Bramesfeld, K., Buchanan, P. M., and

Brennan, D. C. (2009). Sensitivity of billing claims for cardiovascular disease events

among kidney transplant recipients. Clinical Journal of the American Society of Nephrol-

ogy , 4(7), 1213–1221.

Li, E. Y., Tung, C.-Y., and Chang, S.-H. (2016). The wisdom of crowds in action: Forecast-

ing epidemic diseases with a web-based prediction market system. International Journal

of Medical Informatics, 92, 35 – 43.

Li, J. and Cardie, C. (2013). Early stage influenza detection from Twitter. arXiv ,

arXiv:1309.7340.

Li, Y. and Hu, C. (2016). A method for tracking flu trends through Weibo. International

Journal of Database Theory and Application, 9(5), 91–100.

Li, Z., Liu, T., Zhu, G., Lin, H., Zhang, Y., He, J., Deng, A., Peng, Z., Xiao, J., Rutherford,

S., Xie, R., Zeng, W., Li, X., and Ma, W. (2017). Dengue Baidu search index data can

improve the prediction of local dengue epidemic: A case study in Guangzhou, China.

PLOS Neglected Tropical Diseases, 11(3), 1–13.

Liu, J., Weitzman, E. R., and Chunara, R. (2017). Assessing behavior stage progression

from social media data. In Conference on Computer Supported Cooperative Work and

Social Computing (CSCW), pages 1320–1333, New York, NY, USA.

Liu, W. and Ruths, D. (2013). What’s in a name? using first names as features for gender

inference in Twitter. In AAAI Spring Symposium: Analyzing Microtext .

Liu, Y., Gummadi, K. P., Krishnamurthy, B., and Mislove, A. (2011). Analyzing Face-

book privacy settings: User expectations vs. reality. In ACM SIGCOMM Conference on

Internet Measurement Conference, pages 61–70.

PREPRINT



129

Liu, Y., Mei, Q., Hanauer, A. D., Zheng, K., and Lee, M. J. (2016). Use of social media

in the diabetes community: An exploratory analysis of diabetes-related tweets. JMIR

Diabetes, 1(2), e4.
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