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TEXT AS DATA EXAMPLES

- Disease monitoring in Twitter

United States

|

Lamb, Paul, Dredze (2013) Separating fact
from fear: Tracking flu infections on
Twitter. NAACL.

Broniatowski, Paul, Dredze (2013) National and local
influenza surveillance through Twitter: An analysis of the
2012-2013 influenza epidemic. PLOS ONE 8(12): e83672.

Wang, Paul, Dredze (2015) Social media as a sensor of
air quality and public response in China. Journal of
Medical Internet Research.

- Measuring healthcare quality from online reviews

Wallace, Paul, Sarkar, Trikalinos, Dredze (2014) A large-scale
quantitative analysis of latent factors and sentiment in online
doctor reviews. Journal of the American Medical Informatics

Association 21(6), 1098-1103. 7
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Topic modeling

MAKING SENSE
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TOPIC MODELING

A topic model is a probabilistic model of text

> We pretend that our data (text) are the output of a
probabilistic process that generates data
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TOPIC MODELING
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TOPIC MODELING
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TOPIC MODELING
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Our imaginary process also needs to

generate all these distributions

« We need a distribution over distributions

« Called a prior distribution
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TOPIC MODELING PRIORS
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TOPIC MODELING PRIORS
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TOPIC MODELING
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TOPIC MODELING PRIORS

Latent Dirichlet Allocation (LDA)
Blei, Ng, Jordan 2003

The topic and word distributions have Dirichlet priors:

¢, ~ Dirichlet(¢)
6 ~ Dirichlet(0)
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TOPIC MODELING
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TOPIC MODELING
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About health issues

1
Irrelevant to health

Topics can be organized in ways that are more

iInterpretable to users
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RateMDs

DOCTORS YOU CAN TRUST

Topics in online doctor reviews:

Both have positive sentiment
|

best time office
years staff time
caring great appointment
care helpful rude
patients feel staff
patient questions room
recommend office didn’t
family friendly wait

||
Both about staff/office issues
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TOPIC MODELING Al [€RY R {CIGa R0 =

RateMDs

DOCTORS YOU CAN TRUST

Topics in online doctor reviews:

Staff/Office  Personality Surgery
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FACTORIAL LDA

A multi-dimensional topic model
Word distributions are grouped into different concepts

 e.g. sentiment and aspect

Paul and Dredze (2012) Factorial LDA: Sparse multi-dimensional text models.
Proceedings of Advances in Neural Information Processing Systems (NIPS).
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FACTORIAL LDA

Analyzing online drug forums: | Drugs-gorim

Home Wiki Studies |Forum Groups

W Drugs Forum > DRUG-FORUMS > Oplates & Opioids
i..y4 Heroin
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Paul, Dredze (2013) Summarizing drug Paul, Chisolm, Johnson, Vandrey, Dredze (in preparation)
experiences with multi-dimensional topic | | Who participates in online drug communities? A Iarge-
models. North American ACL (NAACL). scale analysis of demographic and temporal trends:



FACTORIAL LDA DRUG DISCUSSIONS

3-dimensional model:

* Drug type

Drugs-

« Route of administration (i.e. method of intake)
« Aspect

Forum

Drug (22 total) |Route Aspect

Alcohol « Injection
Amphetamine ¢ Oral
Cannabis « Smoking
Cocaine « Snorting
Salvia

Tobacco

Chemistry
Culture
Effects
Health
Usage
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FACTORIAL LDA DRUG DISCUSSIONS

Suppose we want to model: (Marijuana,Oral,Chemistry)

A X 4

Marijuana Chemistry
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FACTORIAL LDA

DRUG DISCUSSIONS
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blunts fruit jar
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FACTORIAL LDA

DRUG DISCUSSIONS
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FACTORIAL LDA DRUG DISCUSSIONS
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FACTORIAL LDA

word distribution
for the triple:

Marijuana
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FACTORIAL LDA
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FACTORIAL LDA DEFINITION

Prior for triple (i,j,k):
_ (drug) (route) (aspect)
(/b(, oy =expl;, =+ @, )

(b( i~ Dlnchlet(q)(i, j’k))

i

distribution over words for this triple

In general prior for tuple t:

- eXp(z‘ik 1 tkli"))
¢. ~ Dirichlet(q);)
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FACTORIAL LDA DEFINITION

Prior for triple (i,j,k):
_ (drug) (route) (aspect)
q)(, oy =expl;, =+ @, )

(b( i~ Dlnchlet(q)(i, j’k))

i

distribution over words for this triple

In general prior for tuple t: Document priors:

L =exp(Y, o) 6, = exp(Y,_otfe))
¢. ~ Dirichlet(¢. ) 6 ~ Dirichlet(9, )

49



FACTORIAL LDA

Marijuana Oral Chemistry
weed capsules solvent
cannabis consumes extraction
thc toast evaporate
marijuana stomach evaporated
stoned chewing solvents
bowl ambien evaporation
bud digestion yield
joint juice chloride
blunt absorbed alkaloids
herb ingestion tek
bong meal compounds
pot tiredness evaporating
sativa chew atom
blaze juices aromatic
indica gelatin non-polar
smoking yogurt purified
blunts fruit jar

SEMI-SUPERVISION

Where did
these vectors
come from?
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FACTORIAL LDA SEMI-SUPERVISION

Weights learned from a supervised model are then
used to create a Gaussian prior over the FLDA weights:

Health
symptoms kidney
long-term hcv
depression pains
disorder symptoms
schizophrenia guidelines
severe diet
acute exercise
serotonin (= N ( hepatitis 02)
patients dreams ,
bodys disorder
psychosis disease
psychological attack
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FACTORIAL LDA DRUG DISCUSSIONS

We can use this model to extract specific information
about new drugs

. e.g. dosage, desired effects, negative effects  DIUIS-Eorum

“What is the dosage when taking mephedrone orally?”
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FACTORIAL LDA DRUG DISCUSSIONS

We can use this model to extract specific information
about new drugs

. e.g. dosage, desired effects, negative effects DIU9S-Eorum

“What is the dosage when taking mephedrone orally?”
Mephedrone

Oral

Usage
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FACTORIAL LDA DRUG DISCUSSIONS

We can use this model to extract specific information
about new drugs

. e.g. dosage, desired effects, negative effects  DIUIS-Eorum

“What is the dosage when taking mephedrone orally?”

Mephedrone If it is [someone who isn’t you]’s first time using
Oral Mephedrone [someone who isn’t me] recommends
Usage a 100mg oral dose on an empty stomach.
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FACTORIAL LDA DRUG DISCUSSIONS

We can use this model to extract specific information
about new drugs

. e.g. dosage, desired effects, negative effects  DIUIS-Eorum

“What is the dosage when taking mephedrone orally?”

Mephedrone If it is [someone who isn’t you]’s first time using
Oral Mephedrone [someone who isn’t me] recommends
Usage a 100mg oral dose on an empty stomach.

Reference text: |Itis recommended by users that Mephedrone be
taken on an empty stomach. Doses usually vary
between 100mg — 1g.

55



FACTORIAL LDA DRUG DISCUSSIONS

We can use this model to extract specific information
about new drugs

Histogram of Annotator Scores

B Random
I Baseline
=3 f-LDA-1 |
B f-LDA-2
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Count
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FACTORIAL LDA

Components:

oil
water
butter
Topics: the
weed
hash
cannabis
alcohol
make

milk
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FACTORIAL LDA SPARSITY

‘/ "'

.

This Cartesian product can be huge!

- And not all triples make sense...
0
Jsage
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FACTORIAL LDA SPARSITY

‘/ "'

‘

« Proposed solution: learn a sparsity pattern

N K (k)
6 =b exp(Ekzlam;k )

b.€(0,1); b, ~Beta(p <1)
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FACTORIAL LDA SPARSITY

180

Distribution of Sparsity Values

160u --------------------- IRt PRI R - - Prior
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N
]

Number of Instances
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FACTORIAL LDA

SPARSITY

“Topic™ “Approach” “Focus”
“SPEECH” “L.R.” “M.T.” “EMPIRICAL” “THEORETICAL” “METHODS” “APPLICATIONS”
speech document translation task theory word user
spoken retrieval machine tasks description algorithm research
recognition documents source performance formal method project
state question mt improve forms accuracy technology
vocabulary web parallel accuracy treatment best processing
recognizer answering french learning linguistics sentence science
utterances query bilingual demonstrate syntax statistical natural
synthesis answer transfer using ed previously development
Topic SPEECH DATA MODELING GRAMMAR
Focus METHODS APPL. METHODS APPL. METHODS APPL. METHODS APPL.
(b=0.20) (b=1.00) (b=1.00) (b=1.00) (b=1.00) (b=0.50) (b=1.00) (b=0.57)
dialogue corpus data models parsing grammar
2 spoken data corpus model parser parsing
E speech training annotation approach syntactic based
= dialogues model annotated shown tree robust
= understanding tagging corpora error parse component
= & task annotated collection errors dependency processing
< recognition test xml statistical treebank linguistic
= (b=0.99) (b=0.07) (b=0.02) (b=1.00) (b=0.01) (b=1.00) (b=1.00)
& 3 speech rules grammar grammar
< S words rule parsing grammars
EJ recognition model grammars formalism
g prosodic shown structures parsing
i) written models paper based
= phonological right formalism efficient
spoken left based unifigation
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TOPIC STRUCTURES

Directed acyclic graph (DAG)

Tree

Weighted DAG

64



TOPIC STRUCTURES

pain
surgery
dr
went
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foot
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mri
injury
shoulder
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months
told
surgeon

“Surgery”

surgery
pain
went
dr
surgeon
told
procedure
months
performed
removed
left
fix
said
later
years

| therapy

told
hospital
dr
blood
went
later
days
mother
said
er
cancer
weight
home
father

months )

RateMDs

DOCTORS YOU CAN TRUST

dr
best
years
doctor
love
cares
ive
children
patients
hes
family
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seen
doctors

\ son )

TREE

“Family”

dr
best
children
years
kids
cares
hes
care
old
daughter
child
husband
family
pediatrician
trust

baby
son
pregnancy
dr
child
pregnant
ob
daughter
first
delivered
gyn
birth
delivery
section

. hospital
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TOPIC STRUCTURES (SPARSE) DAG

“Surgery” “Family”

@D RateMDs
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SPRITE

Structured-prior topic models

A family of topic models in which the Dirichlet priors
are functions of underlying components

Paul and Dredze (2015) SPRITE: Generalizing topic models with structured priors.
Transactions of the Association for Computational Linguistics (TACL) 3: 43-57.
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The priors over distributions are weighted

combinations of components:

0,
0
i

distribution over words in jth topic
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exp(Q,
~ Dirichlet(6),,)
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SPRITE
The priors over distributions are weighted

combinations of components:

distribution over topics in mth document
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SPRITE DEFINITION

The priors over distributions are weighted
combinations of components:
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SPRITE DEFINITION

The priors over distributions are weighted
combinations of components:

a
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SPRITE

The priors over distributions are weighted

combinations of components:

We can induce different structures by constraining the values of B
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SPRITE DEFINITION

The priors over distributions are weighted
combinations of components:

F
6o
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SPRITE DEFINITION

The priors over distributions are weighted
combinations of components:

eXp(1X +Ox. +Ox. +Ox. +Ox.)
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SPRITE DEFINITION

The priors over distributions are weighted
combinations of components:

exp(Ox. +O><. +1 x +Ox. +Ox.)
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SPRITE DEFINITION

The priors over distributions are weighted
combinations of components:

o
6o

Tree: Each topic’s B vector is zero in all but one component
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SPRITE DEFINITION

The priors over distributions are weighted
combinations of components:

Factorization: Like a tree, but a nonzero component in each factor
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SPRITE SPECIAL CASE: FLDA

B, has one value of 1 in
each factor; O elsewhere

Factorial LDA:

- C(9) T _ K ®
¢tv - eXp(zczl ﬁtca)cv) v eXp(z kzla)fkv )
emt = €XPp (Z =1 amcgct) me = CXp (Z kzlamfk)

J..1s transpose of B,
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SPRITE SPECIAL CASE: FLDA

| .

“3

- Initial solution: learn a sparsity pattern
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SPRITE SPECIAL CASE: FLDA
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SPRITE SPECIAL CASE: FLDA

“Computational” similarity words “Semantics”
method words corpus semantic
word word knowled
words ; nowieage
> vector multiword  |€ domain
word semantic paper ontology
corpus similar based systems
pelr(?grrrr;:ggce based frequency words
RS method expressions information
training — 7 / wordpet
proposed : —~ = / question
based , ~ dialogue
semantic training question
knowledge learning questions
semantics corpus answer
onto!ogy large answering
relations unsupervised answers
lexical corpora ga
“Linguistics” concepts method systems “Syntax”
grammar
parsing \4‘ ? treebank
representation 12_\; parser
structure . penn
grammars parsing german parsers
parse parser languages trees
syntax parse french dependencies
. treebank english ;
representations S g _ acoustic
semantics . gratmmar IIIAEEL | corpus
formalism == italian parsing
trees structure
structure spanish 82




SPRITE SPECIAL CASES

SPRITE generalizes many existing topic models:

Model Document priors Topic priors
LDA Single component Single component

SCTM Single component Sparse binary
SAGE Single component Sparse w

FLDA | Binary 9 is transpose of 3 | Factored binary (3
PAM | « are supertopic weights | Single component
DMR « are feature values Single component
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PARAMETER
SPRITE ESTIMATION

Need to estimate values for the parameters:

- Word and topic distributions
 Collapsed Gibbs sampling

- Component parameters (i.e. 8, w)

- Gradient ascent
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PARAMETER
SPRITE ESTIMATION

What if B has constraints?

ﬁtc c {O,l},VC F

2.B.=1
o
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PARAMETER
SPRITE ESTIMATION

Relaxing the constraints

B.€10,1},Vc” ' \ B €(0,1),Yc

Zcﬁfczl Zcﬁtczl
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PARAMETER
SPRITE ESTIMATION

Relaxing the constraints

B.€10,1},Vc” ' \ B €(0,1),Yc

Zcﬁfczl Zcﬁtczl

—_

B, ~ Dirichlet(p < 1)

Sparsity-encouraging
prior distribution
87




PARAMETER
SPRITE ESTIMATION

Relaxing the constraints

B.€10,1},Vc” ' \ B €(0,1),Yc

Zcﬁtczl Zcﬁtczl

—

the constraints Sparsity-encouraging
by increasing the prior prior distribution
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SPRITE

EXAMPLE 1

Tittany Thornton GtherealTiffany - 2h
Dear Lord, please let whatever Chris has be food possoning n

NFIQ
Get
#FigH

not the flu. My brihday s Saturday and | really don't want to
spend 1 sick.

7 43

Py Roxeterawr & RoxeteraRibbons - 2h
Pl Oh noll! Everyone at work had fu and now | think I've got it
# & please N0C000000C0000 | have 100 Many things 1o d

15 170

£ Barack Obama follows
Shahid Kamal Ahmad ©shahid«am:

20 nour day, most of it work, one meal at o 30pm, one tolet
break n 13 hours and flu. And yet I'm encing the day totally
psyched.

1 4

Richard Oliver GRichO/verActor - 3h
Flu tabs taken & off 10 bed-I leave you with ancther #posm
Ricardo Pantelone as | head to my sumber #ActorLife x

if{ were a tree,

what kind would 1 be?

a mammoth oak, tall and slender?

ora version, silent, tender?
sciq a weeping willow { would be,

not for sadness, crying or misery,

for the willows roots lie strong and deep,

‘ and by the winding rushy brook, in comfort sleep

Ricardo Pantelone
3 9 View photo
a J:n Ofsen and 2 others follow

ow 8 NFID ©NFIDvaccines - 3h

~ #Teachers can #FightFlu by adding preventi 1
lsssons. Ready-to-uss work pans ava able By st

Kamran M. Riaz ©kr156 - 3h

can sameone check If @oilimaner is down with the flu?As
n for mary aneisi, s sience belies his

npproval kCheoe\H g

16 12

B Kathleen Bachy yrakd ard 10 others follow
8 Jel 4 " CIDRAP CIDI
Ni 2, FLU CAN'Pam"»s mﬁu patients; Global flu upﬂaa HINg
in China; Avian flu in Taiwan, Buigaria ow.ly/lUpo:

2 1

NFID GNFIDvaccines
~ Don't weather the #flu! When flu hits, act fast! #FightFlu
ow.lyMauj

View photo

Syndromic.org GISDS - 5n
808 HK's Dr. Ko Wing:man on Flu Reassoriment Cancems (Avian
Flu Diary) - bit.ly/1IMASWe

© slex vespignani and 11 others follow
@ Skoll Global SikolGiobal -6

S Flu Near You featured on Fighting the Flu - FOX 8 WVUE New
S5 Orleans foxBlive.com/Clip/11125348!.... GFiuNearYou

NFID @NFIDvaccines - 7h
~ Prompt use of antivira's 's key this #flu season via GCOCFIu
owy

mceoe

Fh At oy own S Shgndy but Ederly Hit Hard (CIDRAP} -

us
bit.ly/1M83w3q

Modeling perspective in text:

“What opinions are people tweeting
about gun control?”

Benton, Paul, Hancock, Dredze. A structured model of
topic and perspective in social media. In preparation.
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SPRITE EXAMPLE 1

Suppose we want to model how perspective
influences topics

- e.g. certain topics are “pro” or “anti” gun control

A single-component SPRITE model:

The vth word’s
~ perspective association

¢, =exp(ro,)

b The tth topic’s

perspective association
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SPRITE EXAMPLE 1

Suppose we want to model how perspective
influences topics

- e.g. certain topics are “pro” or “anti” gun control

A single-component SPRITE model:

The vth word’s
~ perspective association

¢, = exp(r@,)
The tth topic’s
perspective association
6  =exp(a,r)

!

The mth tweet’s
perspective association 91




SPRITE EXAMPLE 1

Suppose we want to model how perspective
influences topics

- e.g. certain topics are “pro” or “anti” gun control

A single-component SPRITE model:

The vth word’s
~ perspective association

¢, = exp(r@,)
The tth topic’s
perspective association
6  =exp(a,r)

b Prior is a function of:
Hashtags (#GunControlNow vs #NoGunControl)
Survey data (% gun ownership in each state) 92




SPRITE EXAMPLE 1

Associated with: Pro gun control Anti gun control

The model can help estimate the
% gun ownership in US states:

e Mean error: 8.4
« Baselines: 12.7 - 16.4 93




SPRITE EXAMPLE 2

Suppose we want to model perspective
and we want to organize topics in a hierarchy

94



SPRITE EXAMPLE 2

Suppose we want to model perspective
and we want to organize topics in a hierarchy

Two factors
|

7 C(9) . ——
9, =exp(r,w,, + ), " B.0.,)

with (soft) constraints that
B;is an indicator vector
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SPRITE

Perspective

children
really
wonderful

hes
great
family
comfortable
listens
thank
amazing

went
pay
later
staff
asked

money

dentist
teeth
dental
work
tooth
root
mouth
pain
dentists
went
filling
canal
dr
crown
cleaning

pain
surgery
dr
went
knee
foot
neck
mri
injury
shoulder
bone
months
told
surgeon
therapy

EXAMPLE 2

“Family”

/ﬁ

dr
life
thank
saved
« ’ god
M husband
surgery | ——> heart
pain cancer
went years
dr helped
surgeon doctors
told hospital
proce?;re told fﬁ;(Zﬁf
months : ||
performed hosdprltal able
removed blood
left went
fix later
said days
later mother
years said
er
cancer
weight
home
father
months

dr
best
children
years
kids
cares
hes
care
old
daughter
child
husband
family
pediatrician
trust

dr
best
years
doctor
love
cares
ive
children
patients
hes
family
kids
seen
doctors
son

baby
son
pregnancy
dr
child
pregnant
ob
daughter
first
delivered
gyn
birth
delivery
section
hospital

RateMDs

DOCTORS YOU CA@BRUST




SPRITE SUMMARY

+ Organizes topics in a variety of useful ways
« Can be tailored toward different applications

- Generalizes many topic models
« While opening up new possibilities
- Allows practitioners to make sense of big text data

« Can drive new scientific research
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CONCLUSION

There’s no end to exciting questions we can ask of
big, open data

We need methods to understand what people are
saying on the web and learn meaningful trends

This requires models that can discover patterns
automatically, while accommodating user expectations

Dyl fm=
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