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Abstract

Reciprocity is a pervasive concept that plays an important role in governing people’s behavior,

judgments, and thus their social interactions. In this paper we present an analysis of the

concept of reciprocity as expressed in English and a way to model it. At a larger structural

level the reciprocity model will induce representations and clusters of relations between

interpersonal verbs. In particular, we introduce an algorithm that semi-automatically discovers

patterns encoding reciprocity based on a set of simple yet effective pronoun templates. Using

the most frequently occurring patterns we queried the web and extracted 13,443 reciprocal

instances, which represent a broad-coverage resource. Unsupervised clustering procedures

are performed to generate meaningful semantic clusters of reciprocal instances. We also

present several extensions (along with observations) to these models that incorporate meta-

attributes like the verbs’ affective value, identify gender differences between participants,

consider the textual context of the instances, and automatically discover verbs with certain

presuppositions. The pattern discovery procedure yields an accuracy of 97 per cent, while the

clustering procedures – clustering with pairwise membership and clustering with transitions –

indicate accuracies of 91 per cent and 64 per cent, respectively. Our affective value clustering

can predict an unknown verb’s affective value (positive, negative, or neutral) with 51 per cent

accuracy, while it can discriminate between positive and negative values with 68 per cent

accuracy. The presupposition discovery procedure yields an accuracy of 97 per cent.

1 Introduction

Reciprocity is a pervasive and important phenomenon in human life. At every level,

social relationships are guided by the shared understanding that most actions call

for reactions, and that inappropriate reactions require management. The ethic of

reciprocity (also known as the golden rule), for example, is a moral code born from

social interaction: ‘Do onto others as you would wish them do onto you’. The golden

rule appears in most religions and cultures as a standard used to resolve conflicts.

Reciprocity has been extensively studied in a wide variety of fields from ethics to

game theory, where it is analyzed as a highly effective ‘tit for tat’ strategy. According
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to sociologists and philosophers, the concept of reciprocity lies at the foundation

of social organization. It strengthens and maintains social relations among people,

beyond the basic exchange of useful goods. Thus, the way people conceptualize

reciprocity and the way it is expressed in language play an important role in

governing people’s behavior, judgments, and thus their social interactions.

In computational linguistics, there is extensive literature on identifying relevant

information within massive data repositories and synthesizing this information into a

coherent understanding of the entities and events involved.1 In spite of this, however

there exists to date no computational linguistics study of reciprocity in natural

language, nor is there any model that applies this concept to the empirical study

of human social interaction in unstructured data. The current state of affairs is

rather surprising, given the importance of this concept in language. Illuminating

the exact processes by which people interpret each other’s behavior will help

meet a key challenge in linguistics and computational linguistics: to help improve

communication and avoid misunderstandings in sociocultural interactions.

A detailed analysis of human action and behavior (called social dynamics) is

required for any study of social and cultural interactions. Social dynamics has been

studied extensively in social networks research that combines network topology with

computational models applied mostly on data from on-line networks (i.e., who talks

to whom, the time and frequency of interaction – but not based on what is said and

meant). The field of social networks theory has grown considerably in the past years

as advanced computing technology has opened the door for new research. However,

although this approach may describe some typical patterns, it provides limited

insight into human social interactions. The reason is that these interactions most of

the time are expressed through language. The limitation of current approaches to

social dynamics and the spiraling amounts of online textual information generated

every day require and make possible a new perspective coming, this time from the

computational linguistics community.

In this paper we present an analysis of the concept of reciprocity as expressed in

English and propose a series of algorithms to model it. At a larger structural level

the reciprocity model will induce representations and clusters of relations between

interpersonal verbs.

Our approach is bottom-up in the sense that we get new insights into the

reciprocity relation based on the generalizations made from individual reciprocal

relationships extracted from the web. Specifically, in this paper we introduce an

algorithm that semi-automatically discovers patterns encoding reciprocity based on

a set of simple yet effective pronoun templates. We then rank the identified patterns

according to a scoring function and select the most frequent ones. Using these

patterns we queried the web and other collections and extracted 13,443 reciprocal

instances, such as the following:

(1) When he rebuffed her, she sued him.

1 One such example is the Automatic Content Extraction (ACE) Evaluation Program
(http://www.itl.nist.gov/iaui/894.01/tests/ace/).
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(2) They are criticizing her for what she did to them.

(3) I will never forgive you for lying to me.

These instances represent a broad-coverage resource of reciprocal event pairs (as

shown in italics in the above examples). Such a resource can be very useful in a

number of applications, ranging from question answering and textual entailment

(because reciprocal event pairs encode a type of causal relation) to behavior analysis

of social groups (to monitor cooperation, trustworthiness, and personality) and

behavior prediction in negotiations.

Moreover, our database of reciprocal instances is very rich in semantic and

pragmatic information, and thus can be used in various knowledge-rich applications

that require reasoning and inference. For example, our unsupervised clustering

procedures are performed to generate meaningful semantic clusters of reciprocal

instances. We also present several extensions to these models (along with obser-

vations) that incorporate meta-attributes, such as the verbs’ affective value, study

gender differences between participants, consider the textual context of the instances,

and automatically discover verbs with certain presuppositions.

It seems reasonable to expect that certain reciprocities could be grouped together.

The clustering with transitions and affective value, for example, shows that con-

frontation classes, such as {hit, attack, kill} are more likely to be reciprocated by the

hate class than the forgiveness class. There are many potential uses for this sort of

grouping. Having a single group label for multiple reciprocal eventuality pairs would

allow us to identify certain language patterns as a particular speech act. Also, such

clusters could be useful if one wants to perform a macro-level analysis of reciprocal

relations in a specific domain. For example, examining reciprocal language could

be useful in analyzing the nature of a social community or the theme of a literary

work. Generalizing over many similar instances will give us better insight into how

people communicate – as reactions (effects) to other people’s actions (causes).

Moreover, the gender experiments show that in social reciprocal interactions men

seem to be more violent and aggressive whereas women are more forgiving. We also

discover verbs that are more strongly associated with a particular gender as the

initiator of an action. For example, rape occurs more often with men while verbs

like emasculate are more often associated with women.

We also found that clustering of words by the textual context of the reciprocal

instances yields interesting results. These show that transitions between reciprocal

classes can be highly context-dependent.

Finally, we present a clustering method that automatically discovers verbs that

presuppose an original eventuality – i.e., verbs such as blame, forgive, and thank. Such

clusters can be very useful in generating inference rules for reasoning applications.

The pattern discovery procedure yields an accuracy of 97 per cent, while the basic

clustering procedures indicate accuracies of 91 per cent (clustering with pairwise

membership) and 64 per cent (clustering with transitions). Our affective value

clustering can predict an unknown verb’s affective value (positive, negative, and

neutral) with 51 per cent accuracy, while it can discriminate between positive and

negative values with 68 per cent accuracy. The presupposition discovery procedure

yields an accuracy of 97 per cent.
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These rich models of meaning will potentially pave the way toward the creation of

systems with true language understanding capabilities for social interaction analysis

and social inference. Moreover, the associations and clusters thus generated would

hopefully draw more attention in the community to computational approaches to

semantic and pragmatic analysis problems.

The paper is organized as follows. In the next section we introduce the concept

of reciprocity as expressed in English and propose a formal representation for it,

followed by relevant previous work in Section 3. In Section 4 we detail a semi-

supervised approach of extracting patterns that encode reciprocity in English. In

Section 5 we present various algorithms for extracting pairs of reciprocal instances

and clustering them in meaningful clusters. In Section 6 we describe the experimental

data and present the results. Discussions and conclusion are presented in Section 7.

2 Reciprocity in English

The Oxford English Dictionary Online2 defines reciprocity as ‘a state or relationship

in which there is mutual action, influence, giving and taking, correspondence, etc.,

between two parties’, while in WordNet (Fellbaum 1998) the verb to reciprocate

means ‘to act, feel, or give mutually or in return’.

Following these definitions, we define reciprocity as a relation between two

eventualities eo (original eventuality) and er (reciprocated eventuality), which can

occur in various reciprocal constructions. Each eventuality is an event3 or a state

between two participants:

�(eo(X, Y), er(W, Z))

The two arguments of each eventuality represent the subject and the object (direct

or indirect) in this order, and they might not all be explicitly stated in the sentence,

but can be inferred.

From a timing point of view there are two distinct possibilities:

(a) Mutual reciprocity between eventualities that occur concurrently,4 written as

eo(X, Y ) & er(W , Z), and

(b) ‘in return’ reciprocity, when one eventuality causes the other, written as

eo(X, Y ) ≺c er(W , Z).

A few such examples are presented below with the corresponding reciprocity

relations:

(4) Mary argued with Paul at the station.

argue with (Mary, Paul) & argue with (Paul, Mary)

(5) Paul and Mary hate each other.

hate (Paul, Mary) & hate (Mary, Paul)

2 http://www.oed.com/
3 We use the term ‘event’ to denote all those actions or activities performed by people.
4 The word ‘concurrently’ also refers to cases like ‘John and Mary chase each other’, where

the action is an iterative process with mutual meaning.
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(6) Mary likes Paul and he likes her, too.

like (Mary, Paul) & like (Paul, Mary)

(7) Mary likes Paul for helping her.

help (Paul, Mary) ≺c like (Mary, Paul)5

As shown in the examples above, in English there are two basic types of

reciprocal constructions: mono-clausal reciprocals (involving words such as (to)

hug, to agree/argue with, partner of, mutual(ly), together, each other – examples (4)

and (5)), or sentence-level reciprocals (involving two consecutive clauses – examples

(6) and (7)). Most of the sentence-level reciprocals are paraphrased by coordinations

or subordinations of two clauses with the same or different predicate and inverted

arguments. They might also manifest various markers or cues as shown in bold in

the above examples.

In this paper we focus only on sentence-level constructions when the eventualities

occur in different consecutive clauses, and when the subject–object arguments of

each eventuality are personal pronoun pairs that occur in reverse order in each

eventuality (i.e., X = Z and Y = W ). For instance, in ‘She likes him for helping

her’, the two eventualities are like (she, he) and help (he, she). In this example,

although the subject of the second verb is not explicitly stated, it is easily inferred.

These simplifying assumptions will prove very useful in the semi-supervised pattern

discovery procedure to ensure the accuracy of the discovered patterns and their

matched instances. This procedure will be described in detail in Section 4, after a

summary of relevant previous work below.

3 Previous work

Although the concept of reciprocity has been studied a lot in different disciplines,

such as social sciences (Gergen et al. 1980), anthropology (Sahlins 1972), economics

(Fehr and Gachter 2000), and philosophy (Becker 1990), linguists have started to

look deeper into this problem only more recently.

In linguistics, most of the work on reciprocity focuses on mono-clausal reciprocal

constructions, in particular on the quantifiers each other and one another (Heim 1991;

Dalrymple et al. 1998; König 2005). Most of this work has been done by language

typologists (Maslova and Nedjalkov 2005; Haspelmath 2007) who are interested in

how reciprocal constructions of these types vary from one language to another and

they do this through comparative studies of large sets of the world’s languages.

However, an in-depth study of reciprocity goes beyond the study of quantifiers, to

involve issues related to semantic compositionality and pragmatic and sociocultural

phenomena. One of the main goals of natural language understanding, for example,

is to detect narrative events (Schank and Abelson 1977; Lehnert et al. 1983; Mandler

1984; Halpin and Moore 2006) and order them along the time coordinate (Chambers

et al. 2007; Verhagen et al. 2007; Chambers and Jurafsky 2008; Chambers and

Jurafsky 2009; Pustejovsky and Verhagen 2009). Inferring semantic relations between

5 We assume here that the subject of the verb help has been recovered and the coreference
solved.
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verbs has been tackled in various ways in the literature: verb classes (Kipper et al.

2000; Merlo and Stevenson 2001; Joanis et al. 2008), selectional restrictions (Resnik

1993; Resnik and Diab 2000; Lin and Pantel 2001; Glickman and Dagan 2003;

Zanzotto et al. 2006), and others (Hobbs et al. 1993; Hobbs 2005). While the

literature is rich in theories (and some tools) of semantics, pragmatics, and discourse

(Schank and Abelson 1977; Barwise and Perry 1985; Grosz and Sidner 1986; Levin

1993; Baker et al. 1998; Fellbaum 1998; Kipper et al. 2000; Asher and Lascarides

2003; Webber et al. 2003; Hovy et al. 2006), to our knowledge, reciprocity has not

been studied in computational linguistics.

In this paper we present a pattern discovery procedure that extends over previous

approaches that use surface patterns as indicators of semantic relations between

nouns or verbs ((Hearst 1998; Chklovski and Pantel 2004; Etzioni et al. 2004;

Turney 2006; Davidov and Rappoport 2008) inter alia). We extend over these

approaches in two ways: (i) our patterns indicate a new type of relation between

verbs, and (ii) instead of seed or hook words we use a set of simple yet effective

pronoun templates, which ensure the validity of the patterns extracted.

To the best of our knowledge, the rest of our reciprocity model is novel. In

particular, we use a novel procedure that extracts pairs of reciprocal instances and

present various novel unsupervised clustering methods along different dimensions

that group the instance pairs in meaningful ways. We also present some interesting

observations on the data thus obtained and suggest future research directions.

4 Approach

In the following sections we present our approach to modeling reciprocity in English.

In particular we introduce an algorithm that semi-automatically discovers patterns

encoding reciprocity. We then rank the identified patterns according to a scoring

function and select the first k-ranked ones. Using these patterns we queried the web

and extracted 13,443 reciprocal instances that represent a broad-coverage resource.

4.1 Pattern discovery procedure

Our algorithm first discovers clusters of patterns indicating reciprocity in English,

and then merges the resulting clusters to identify the final set of reciprocal construc-

tions. We present a detailed description of the algorithm in this section and evaluate

it in Section 6.

We refer to a linguistic construction discovered by our procedure as ‘pattern’ (a

pattern type) and to an occurrence of a pattern in the corpus (a pattern token) as a

‘pattern instance’.

4.1.1 Pronoun templates

In this paper we focus on reciprocal eventualities that occur in two consecutive

clauses and have two arguments: a subject and an object. One way to do this is to

fully parse each sentence of a corpus and identify coordinations or subordinations of

two clauses. The next step would be to identify the subject and object arguments of
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each verb in each clause with the help of a PropBank-style grammatical or semantic

role labeler (Kingsbury et al. 2002) and make sure they represent people named

entities (as indicated by proper names, personal pronouns, etc.). As our focus is

on reciprocal constructions, we also have to keep in mind that the verbs have to

have the same set of arguments (subject–object) in reverse order. Thus, noun and

pronoun co-reference should also be resolved at this point.

Instead of starting with such a complex and error-prone preprocessing procedure,

our algorithm considers a set of pronoun templates where personal pronouns are

anchor words (they have to be matched as such). Each template consists of four

personal pronouns corresponding to a subject–object pair in one clause, and a

subject–object pair in the other clause. Two such examples are

‘[Part1] I [Part2] him [Part3] he [Part4] me [Part5]’ and

‘[Part1] they [Part2] us [Part3] we [Part4] them [Part5]’,

where [Part1]–[Part5] are partitions identifying any sequence of words. This is

an elegant procedure because in English, pronouns have different cases, such as

nominative and accusative,6 which identify the subject, and respectively the object

of an event. This saves us the trouble of parsing a sentence to find the grammatical

roles of each verb. In English, there are 30 possible arrangements of nominative–

accusative case personal pronoun pairs. Thus, we built 30 pronoun templates.

This approach is similar to that of seed words (Hearst 1998) or hook words

(Davidov and Rappoport 2008) in previous work. However, in our case they are

fixed and rich in grammatical information in the sense that they have to correspond

to subject–object pairs in consecutive clauses.

As the first two pronouns in each pronoun template belong to the first clause

(C1), and the last two to the second clause (C2), the templates can be restated as

[Part1] C1 [Part3] C2 [Part5],

with the restriction that partition 3 should not contain any of the four pronouns

in the template. C1 denotes ‘Pronoun1 [Part2] Pronoun2’ and C2 denotes ‘Pronoun3

[Part4] Pronoun4’. Partitions 2 and 4 contain the verb phrases (and thus the

eventualities) we would like to extract. For speed and memory reasons, we limit

their size to no more than five words.

Moreover, since the two clauses are consecutive, we hypothesize that they should

be very close to each other. Thus, we restrict the size of each partition 1, 3, and 5

to no more than five words. We then consider all possible variations of the pattern

where the size of each partition varies from 0 to 5. This results in 216 possible

combinations (i.e., 63). Moreover, to ensure the accuracy of the procedure, partitions

1 and 5 should be bounded to the left and respectively to the right by punctuation

marks, parentheses, or paragraph boundaries. An example of an instance matched

by one such pattern is

‘, I cooked dinner for her and she loves me for that’.

6 In English, the pronoun you has the same form in nominative and accusative.
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4.1.2 Scoring function

One way to compute the prominence of the discovered patterns would be to consider

the frequency of each of the five partitions. However, as our preliminary experiments

suggest, although individual patterns within each partition do often repeat, ranking

patterns spanning all three partitions (PART1, PART3, and PART5) is problematic.

Patterns with relatively long partitions (more than two words each) seldomly occur

more than once in the entire corpus. Thus, frequency would produce very little

differentiation in ranking the patterns. This frequency baseline procedure yielded

very poor results – i.e., the top ten such patterns occurred only five to ten times in

the corpus.

Consequently, we developed an alternative scoring system in lieu of frequencies.

A sequence of size n (i.e., seq(n)) is an instance of a pronoun template and a

subsequence of size k (i.e., seq(k)) is simply a substring of the sequence with k < n.

For example, for the instance ‘I love her and she loves me, too’ of length 9, there will

be two subsequences of length 8: ‘love her and she loves me, too’ and ‘I love her and

she loves me,’. Taking into account the frequencies of the subsequences occurring

within instances of each partition, we use the following recursive scoring function

(where n is the length of each subsequence of size n):
Score(seq(n)) =

{
Disc(freq(seq(n))) +

∑
seq(n−1) Disc(Score(seq(n− 1))), if n > 1

freq(seq(n)), if n = 1
(1)

In addition, in order to ensure a valid ranking over the extracted templates with

different lengths for each partition, we need to normalize the scores obtained for

PART1, PART3, and PART5. In other words, we need to scale the scores obtained

for each partition to discount the scores of longer partitions, so that the maximum

possible score would remain the same irrespective of the length of the partition.

Thus, we used the following formula to compute the discount for each of PART1,

PART3, and PART5, where n is the length of the subsequence:

Disc(Score(seq(n))) =

{
(1.0 − fraction) ∗ fractionm−n

m−n+1
, if n > 1

fractionm−n

m−n+1
, if n = 1

(2)

Fraction is an empirically predetermined parameter – here set to 0.5. The variable

m is the length of the entire PART1, PART3, or PART5 in question.

This allows not only the frequency of the exact pattern to contribute to the score

but also occurrences of similar patterns, although to a lesser extent. Moreover, as

partitions 1, 3, and 5 constitute the salient parts of the pattern as the environment

for the two reciprocal clauses C1 and C2, we take the score to be ranked as

Score(PART1) ∗ Score(PART3) ∗ Score(PART5).

We searched the thirty pronoun templates with various partition sizes on a 20-

million word English corpus obtained from the Project Gutenberg, the largest single

collection of free electronic books (over 27,000)7 and the British National Corpus

7 http://www.gutenberg.org
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Table 1. The top 15 reciprocal patterns along with examples

Patterns Examples

C1 [, |; |.] C2 I help him; he helps me.

C1 and C2 He understands her and she understands him.

C1 and C2 [right] back I kissed him and he kissed me back.

C1 and C2 for that They helped us and we appreciate them for that.

C1 and C2, too I love her and she loves me, too.

C1 when C2 He ignores her when she scolds him.

C1 whenever C2 He is there for her whenever she needs him.

C1 because C2 They tolerate us because we helped them.

C1 as much as C2 He loves her as much as she loves him.

C1 for C2 (vb-ing) He thanked her for being patient with him.

C1 but C2 I loved her but she dumped me.

C1 for what C2 They will punish him for what he did to them.

C1 and thus C2 She rejected him and thus he killed her.

when C1, C2 When he confronted them, they arrested him.

C1 as long as C2 She will stay with him as long as he doesn’t hurt her.

(BNC), an 100-million word collection of English from spoken and written sources.

There were 2,750 instances matched, which were ranked by the scoring function,

and 1,613 distinct types of patterns, which generated 1,866 distinct pattern instances.

Thus, we selected the top fifteen patterns, after manual validation. These patterns

represent 56 per cent of the data (Table 1). All the other patterns were discarded as

having very low frequencies and being very specific.

The manual validation was necessary in order to collapse some of the identified

instances into more general classes. For example, the patterns ‘C1 and C2 to’ (e.g.,

‘He could not hurt me and I would not wish him to.’), ‘C1 and C2 in’ (e.g., ‘I give

you and you take me in.’), and ‘C1 and C2 fast said Aunt Jane’ (e.g., ‘He will come

to her and she can hold him fast said Aunt Jane.’) were collapsed into ‘C1 and C2’.

This procedure can be partially solved by identifying complex verbs such as ‘take

in’. However, we leave this improvement for future work.

We analyzed various pattern-ranking scores for various sizes of each partition

PART1, PART3, PART5, and for all partitions. Overall, the best ranking scores

are obtained for size 1 of each partition, with slight preference over size 0 or 1 for

partitions 1 and 5, and size 1 for partition 3.

4.1.3 Representing the data

After obtaining these patterns, we must extract pairs of eventualities of the form

(eo, er). This involves both reducing the clauses into a form that is semantically

representative of some eventuality, as well as determining the order of the two

eventualities (i.e., if they are asymmetric).

As shown in the previous sections, each pattern contains two clauses of the form

‘Pronouni [Part2/4] Pronounj ’, where the first pronoun is the subject and the second

is the object. From each clause we extract only the non-auxiliary verb, as it carries
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the most meaning. We first stem the verb and then negate it if it is preceded by not

or n’t. For example, ‘They do not like him because he snubbed them’ is represented

as the eventualities (eo, er) = (snub,¬like).
Certainly, we are missing important information by excluding phrases. However,

these features can be difficult to capture accurately, and as inaccurate input could

degrade the clustering accuracy, in this research we stick with the important and eas-

ily obtainable features. Another limitation of this representation is that the meaning

of verbs, such as tell, let, and want, is not very clear in the absence of their context.

4.1.4 Ordering the eventualities

Most patterns entail a particular ordering of the two eventualities, corresponding to

symmetric (e.g., ‘He loves her and she loves him’) or asymmetric eventualities (e.g.,

‘He ignores her when she scolds him’). For ambiguous reciprocal patterns (e.g., ‘He

loves her and she loves him’ and ‘He cheated on her and she still loves him!’), we rely

on our recent work (Girju 2010), where we identified a set of six features employed

in a semi-supervised model with an accuracy of 90.2 per cent. These are summarized

next (the eventualities are referred here as e1 and e2, where the index represents the

order in which they are mentioned in the reciprocal instance):

F1. Reciprocal pattern. This feature indicates one of the top fifteen patterns.

Some patterns identify sequential eventualities, and thus impose an asymmetric

reading. For example, ‘She married him because he made her laugh’ shows an

asymmetric reciprocity, while the reciprocity in ‘I love him as much as he loves me’

is symmetric.

F2, F3. Type of eventuality indicates whether eventualities e1 and e2 are states

or events. For example, verbs describing states refer to the way things ‘are’ – their

appearance, state of being, smell, etc. (e.g., need, hate, love). Other verbs like hit and

chase are action verbs. The values of these features are automatically determined

based on an in-house list of 300 stative verbs identified from WordNet (Fellbaum

1998). The identification procedure captured the most important difference between

stative and action verbs, as action verbs can be used in continuous tenses while

stative verbs cannot.

This feature was borrowed from the linguistics literature on clause-level con-

structions, such as each other (König 2005). König, for example, suggests that with

predicates denoting states, the relevant sentences express fully symmetric situations

(e.g., ‘These two hate each other.’), whereas event-denoting predicates are more

compatible in their interpretation with a delay between the two relevant events (e.g.,

‘They chase each other.’).

We hypothesize here that these observations can be extended to sentence-level

reciprocal constructions between distinct verbs as well. Moreover, we show that in

our dataset this delay between the two events (asymmetric instances) corresponds

to ‘in return’ reciprocity (i.e., social causality).

F4 and F5. Verb Modality represents the modality of each verb (if any). Possible

values are: may, would, can, shall, might, will, could, should, must.
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F6. Relative temporal order of the two eventualities. This feature indic-

ates if (and if yes, which) one eventuality happens before, after, or in the same

time with the other eventuality. The order is simply calculated based on the tense

information provided by each verb in context. For example, past simple happens

before present or future tense. This feature is used to further ‘disambiguate’ those

instances for which the symmetry property cannot be determined solely based on

the pattern information (feature F1).

For example, for the pattern ‘C1 and C2’, if the eventualities e1 and e2 are

states (or respectively events), then the encoded reciprocity relation is symmetric (or

asymmetric, respectively). When the pattern is ‘C1 as much as C2’, if the eventualities

e1 and e2 are events and the eventuality e2 happens before e1, then the encoded

reciprocity relation is asymmetric.

In order to implement the features we first chunk parsed (Li and Roth 2001) each

pattern instance and automatically identified the verbs along with their tense and

modality information. Table 2 provides a summary of the feature values identified

on the pattern instance corpus. For the eventuality type we use the term ‘mixed’ to

refer to either a state or an event.

Table 2 indicates that the patterns ‘C1 and C2 back’, ‘C1 when C2’, ‘C1 whenever

C2’, ‘C1 because C2’, ‘C1 for C2 (vb-ing)’, ‘C1 for what C2’, ‘C1 and thus C2’,

‘when C1, C2’, and ‘C1 as long as C2’ are asymmetric irrespective of the type of

the two eventualities. The analysis indicates that all the other patterns can be either

symmetric or asymmetric if their eventualities are either states or events, respectively.

For these last patterns, when the eventuality type is mixed, the relative temporal

order of the verbs identifies the order of the eventualities.

5 Modeling reciprocity

Once the reciprocal verb pairs have been extracted and the order of the eventualities

identified, it seems reasonable to expect that certain reciprocities could be grouped

together. For example, the language used in convincing a person of something

could be characterized by verbs, such as eo = {convince, promise, assure, beg} and

er = {believe, trust, choose, forgive}.
There are many potential uses for this sort of grouping. Having a single group

label for multiple reciprocal eventuality pairs would allow us to identify certain

language patterns as a particular speech act. Also, such clusters could be useful if

one wants to perform a macro-level analysis of reciprocity in a specific domain. For

example, examining reciprocal language could be useful in analyzing the nature of

a social community or the theme of a literary work. Generalizing over many similar

instances will give us better insight into how people communicate – as reactions

(effects) to other people’s actions (causes).

It would be beneficial to have an automated way of forming such clusters,

because manual annotation is time-consuming with a large lexicon, and we may like

to discover correlations that we do not explicitly predefine. Thus, in this section we

present models for clustering the eventualities that we extracted through the process

described in the previous sections. Experimental results are presented in Section 6.
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Table 2. The set of 4 (out of 6) features indicative of symmetric or asymmetric recipro-

city shown here along with examples. The ‘≺c’ symbol refers to ‘in return’ reciprocity.

Event. Type Rel. temporal

Patterns e1 e2 Order of event Symmetry Examples

C1 [, |; |.] C2 State State e1 =t e2 Symmetric He loves her; she loves him.

Event Event e1 =t e2 Asymmetric He helped me, I helped him.

(e1 ≺ce2)

C1 and C2 State State e1 =t e2 Symmetric They respect him and he respects them.

Event Event e1 =t e2 Asymmetric He hugs her and she elbows him.

(e1 ≺ce2)

C1 and C2 back State State e1 =t e2 Symmetric She does love him and he loves her back.

Event Event e1 =t e2 Asymmetric She kissed him and he kissed her back.

(e1 ≺ce2)

C1 and C2 for that Mixed Mixed e1 ≤t e2 Asymmetric He destroyed her life and she hates him

(e1 ≺ce2) for that.

C1 and C2, too State State e1 =t e2 Symmetric He loves her and she loves him, too.

Event Event e1 =t e2 Asymmetric I chase him and he chases me, too.

(e1 ≺ce2)

C1 when C2 Mixed Mixed e1 =t e2 Asymmetric He ignores her when she scolds him.

(e2 ≺ce1)

C1 whenever C2 Mixed Mixed e1 =t e2 Asymmetric He was there for her whenever she needed

(e2 ≺ce1) him.

C1 because C2 Mixed Mixed e1 =t e2 Asymmetric She married him because he was good to her.

(e2 ≺ce1)

C1 as much as C2 State State e1 =t e2 Symmetric She enjoyed him as much as he enjoyed her.

Event Event e1 =t e2 Asymmetric They hit him as much as he hit them.

(e2 ≺ce1)

C1 for C2 (vb-ing) Mixed Mixed e1 >t e2 Asymmetric They thanked him for helping them.

(e2 ≺ce1)

C1 but C2 State State e1 = t e2 Symmetric I love her but she hates me.

Mixed Mixed e1 ≤ t e2 Asymmetric He tried to talk to her but she ignores him.

(e1 ≺ce2)

C1 for what C2 Mixed Event e1 ≥ t e2 Asymmetric They will punish him for what he did

(e2 ≺ce1) to them.

C1 and thus C2 Mixed Event e1 =t e2 Asymmetric She rejected him and thus he killed her.

(e1 ≺ce2)

when C1, C2 Mixed Mixed e2 ≥t e1 Asymmetric When he started to hit them, they

(e1 ≺ce2) arrested him.

C1 as long as C2 Mixed Mixed e2 =t e1 Asymmetric She is staying with him as long as

(e2 ≺ce1) he is kind to her.

Our clustering approach is such that (1) the results must be easily interpreted

by human annotators; and (2) we must be able to assign cluster membership to

reciprocal instances that we have not yet seen. These conditions could be satisfied

under a probabilistic framework. Furthermore, such an approach is a natural way
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to model cluster membership for this inherently ambiguous and context-dependent

problem. Rather than having a strict and binary membership to a cluster, it would

be useful to say that an instance belongs to a cluster with some likelihood or degree

of membership. That is, we employ ‘soft’ clustering as opposed to deterministic

‘hard’ clustering.

Another important advantage of our probabilistic approach over traditional

clustering methods is that we can easily introduce additional variables into our

models to consider other interesting factors such as the participants and contexts of

these reciprocal interactions.

Below we present two probabilistic models for basic verb clustering within our

semantic space of reciprocal eventualities. We then introduce several extensions

to these models to incorporate meta-attributes like the verbs’ affective value, to

model gender differences between participants, to consider the textual context of the

instances, and to automatically discover verbs with certain presuppositions.

5.1 Basic model

Probabilistic generative models with hidden variables have become increasingly

popular in the field of text mining and natural language processing (NLP). For

example, topic models like probabilistic latent semantic analysis (pLSA) (Hofmann

1999) and latent Dirichlet allocation (LDA) (Blei et al. 2003) posit that each token

is associated with two variables: a word, which is observable in a document, and

a topic, which is unknown. Both of these model documents as a finite mixture

of topics, where each topic is modeled as a multinomial distribution over words.

Words with statistically strong co-occurrences are grouped into topics, and thus

these models are an elegant way to cluster words based on distributional similarity.

There has also been a recent interest in using topic models for social sciences

as a tool for generalizing over large amounts of data (Ramage et al. 2009), thus

further motivating our interest in constructing latent variable models of social

interactions. The data we are more interested in modeling, however, is not the

raw text, but the connected verbs denoting interpersonal relationships that we

have already extracted. We can represent our data as a graph where each verb is

represented as a node, and each reciprocal instance (eo, er) is an edge between the

verbs. We are interested in capturing properties of and relations between these verbs

based on their connectedness.

While it may seem limiting to model only the verb relations and not the larger

text, probabilistic models of word networks have shown to be useful in NLP. For

example, random walk approaches have been applied to WordNet (Fellbaum 1998)

to compute the lexical relatedness of words, which is an important metric for tasks

such as question answering, information retrieval, and opinion mining (Esuli and

Sebastiani 2007; Hughes and Ramage 2007).

Many probabilistic models can be applied to graph and network data to cluster

nodes based on connectedness. Possible applications of such models are protein

interactions on relational data and social network analysis. For example, Hofman

and Wiggins (2008) use a Bayesian model to discover “communities” within a
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social network – that is, groups of nodes that are strongly linked to one another.

Stochastic block models take this approach a step further modeling groups and the

links between groups. However, Kemp et al.’s model (2006) is the most relevant

to this research, as it simultaneously learns semantic concepts and the relations

between them. Unfortunately, their model constrains each unit to belong to one

group, which is not appropriate for our task because interactions with a verb might

not be classified in the same way in all instances. For example, consider the verb

help in the following two verb pairs: (need–help) and (help–help). In the first instance,

help might have an altruistic meaning, but not in the second instance, where it is

more likely an obligation or repayment.

Airoldi et al. (2008) address this shortcoming with mixed-membership block models,

which allow nodes to belong to multiple groups, from which links to other nodes

can be generated. However, we can not use this model as-is, because it assumes an

undirected network, whereas our relational data can have a strict order.

We address these concerns below and describe two simple yet effective models for

clustering our reciprocal verbs.

5.1.1 Clustering with pairwise membership

We propose a generative model in which we assume that each pair of eventualities

(eo, er) belongs to a latent class z, and each class is associated with two distinct

multinomial distributions from which the two eventualities are independently drawn.

This approach is closely related to that of Parkkienn et al. (2009), who develop

an asymmetric block model that considers memberships of the margin components

of links. However, we structure our graph such that there can be multiple edges

between the same two nodes, one for each (eo, er) pair in our data, which allow

us to consider not just the linkage between verbs but also the frequency of verbs,

which will help us identify the eventualities that are more prevalent in a given

class.

In a Bayesian model, the posterior probability is defined in terms of a prior

probability that is coupled with the probabilities that can be inferred from the

observed data. A natural way to define the prior probability here is with a

Dirichlet(α) distribution, the conjugate prior of the multinomial distribution (Connor

and Mosimann 1969). The α parameter is a vector that represents the most likely

mixing proportions – that is, if an infinite number of multinomials are sampled

from Dirichlet(α), the average distribution will reflect the components of α, and the

variance of the distribution increases as the magnitude of α decreases.

When estimating probability distributions as a ratio of counts, ‘pseudocounts’ are

often added to the observed counts to smooth the distributions. For example, it is

a common practice to estimate language models with Laplace smoothing where a

count of 1 is added to each word count, and the size of the vocabulary is added

to the total number of counts. The inclusion of these pseudocounts can be derived

from a Dirichlet prior where the α vector is a uniform vector and each component is

1 (Nigam et al. 2000). Values other than 1 can be used to increase or reduce the level

of smoothing. As the magnitude of the α vector increases, the Dirichlet probability
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mass becomes more concentrated at the points defined by the vector, and thus a

large α value will increase the effect of smoothing.

Thus, in our generative model we assume that the multinomial distributions are

first sampled from the Dirichlet distribution, after which the variable assignments

are sampled from the multinomial distributions. Formally, the process by which our

collection of eventuality pairs is generated has the following steps:

(1) Draw a multinomial distribution of classes θ from Dirichlet(α).

(2) Draw a multinomial distribution of eo verbs φoz from Dirichlet(β) and a

multinomial distribution of er verbs φrz from Dirichlet(β) for each class z.

(3) For each pair of eventualities si

(a) sample a class z from θ, and

(b) sample eo from φoz and er from φrz .

Thus, the probability of generating a particular pair is

P (eo, er) =

|Z |∑
k

P (z = k|θ)P (eo|z = k, φo)P (er|z = k, φr) (3)

Pairs are thus ‘clustered’ together into each class z with some degree of mem-

bership. Each class can be thought of as a general type of reciprocity, such as an

action followed by appreciation, or an attack followed by retaliation. It is important

to note that each class is characterized not by a distribution of specific pairs but

by a distribution of eo and er verbs. This allows for the classification of (eo, er)

pairs that do not appear in the corpus. For example, if we have never seen the pair

(slap, punch), but we know that (slap, hit) and (kick, punch) belong to the same class,

then it could be inferred that (slap, punch) belongs to the same group.

The Dirichlet priors add a layer of regularization to the model that smoothes the

probability distributions. This is especially important in order to avoid overfitting to

our relatively small corpus. This smoothing helps account for noise in the data and

allows class assignments that have a count of zero in the corpus (i.e., to avoid zero

probabilities). With these priors, however, an exact solution to the likelihood function

becomes intractable, and we cannot use the popular and otherwise straightforward

Expectation-Maximization (EM) algorithm (Dempster et al. 1977), an iterative hill-

climbing procedure that will converge to a local maximum of the corpus likelihood,

given an initial guess of the parameters.

A number of other inference techniques, such as variational methods (Jordan et al.

1998) or Markov chain Monte Carlo methods (Andrieu et al. 2003) can be used. In

this paper we will use Gibbs sampling, a basic Markov chain Monte Carlo method,

to approximate the parameters. In a Gibbs sampler, one approximately reproduces

the posterior distribution by repeatedly sampling a value for each hidden variable

from a distribution conditioned on the current state of the other hidden variables

(Gilks et al. 1995).

Our basic Gibbs sampling algorithm is as follows:

• Initially assign each reciprocal pair a random class label.
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Table 3. A sample of verb classes induced when running our clustering with pairwise

membership model with 12 classes. The words correspond to the 10 words with the

highest value of P (eo|class) and P (er|class)

Cluster 1 Cluster 2 Cluster 3

eo er eo er eo er

hate hate trust trust help thank

do forgive respect respect support help

love despise followeth forbid understand love

betray love love thank remember sue

fear fear have betray tell remember

despise punish find love let understand

hurt forgive belong belong be support

reject kill fuck surprise use enjoy

leave blame care find thank pay

abandon leave make care look be

• For each iteration

— for each pair of eventualities si in the collection C:

– Subtract 1 from the current counts nz=keo=a
and nz=ker=b

, where si = (eo =

a, er = b) and the pair is currently assigned to the class zi = k.

– Sample a new class label zi = k(new) from the multinomial distribu-

tion given by (4).

– Add 1 to the counts nz=k
(new)

eo=a
and nz=k

(new)

er=b
.

The update equation is as follows:

P (zi = k|eo,i = a, er,i = b, z−i, α, β) ∝
(
nzi=k∗ + α

)
×

nz=keo=a
+ β

nz=keo=∗ + Voβ
×

nz=ker=b
+ β

nz=ker=∗ + Vrβ
(4)

where Vo and Vr are the number of unique eo and er verbs, respectively. We use

the notation nyx to refer to the number of times that x has been assigned to y –

for example, nz=keo=a
indicates the number of times the eo verb a has been assigned to

class z = k.

The conjugacy of the Dirichlet-multinomial distributions allows the hidden mul-

tinomials θ and φ to be marginalized out of the formula, leaving us with only the

token assignments z to sample. The pseudocounts α and β are assumed to be known

in the equation. We discuss the selection of these parameters in Section 6.

A sample of the clusters induced using 12 classes is shown in Table 3. These

clusters show basic types of human interaction. Most of them are related to love,

hate, need (often mutual), desire (often mutual), trust and respect, communication,

gratitude, physical affection, and physical attacks – irrespective of the numbers of

clusters induced.
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5.1.2 Clustering with transitions

As an alternative approach, here we propose to cluster eventualities using a hidden

Markov model (HMM). An HMM can model sequential data such that each piece

of data is generated by some state, and the state of the next piece of the sequence

depends on the current state (Rabiner and Juang 1986). This is a natural approach

for our data, because er ‘follows’ eo. (In the case of a symmetric relationship, we

generated two directed links, one for each direction.)

In our case, we posit that an eo is drawn from some verb class, and that class has

some probability of being reciprocated by another class, from which er is drawn. We

can also consider a special start/end state, which precedes the eo class and follows

the er class.

Thus, we use a four-node HMM, in which the nodes t0 and t3 belong to a

designated ‘start/end class’ (which we will call z0), and t1 and t2 belong to some

classes (≥ 1) from which eo and er are respectively drawn. We once again use

Dirichlet priors over the distributions. The following process is used to generate the

set of instances:

(1) Draw a multinomial distribution of transitions πi,j from Dirichlet(δ) for each

pair of classes.

(2) Draw a multinomial distribution of verbs φz from Dirichlet(β) for each class

z ≥ 1.

(3) For each pair of eventualities si

(a) sample a class i from π0,i,

(b) sample a class j from πi,j ,

(c) sample eo from φi and er from φj .

The Gibbs sampling update equation is:

P (zio = j, zir = k|eo,i = a, er,i = b, z−i) ∝

(nzo=j + γ) ×
nz=jeo=a

+ β

n
z=j
eo=∗ + Voβ

× nzr=k + γ

nzo=j + Cγ
×

nz=ker=b
+ β

nz=ker=∗ + Vrβ
(5)

where C is the number of classes.

A sample of clusters induced using C = 16 classes is shown in Figure 1. This

approach generates classes similar to those of the pairwise model introduced in the

previous subsection. However, for clustering with transitions we can not assign a

single class to an entire instance (eo, er) – just to the verbs individually. Under this

approach, we cluster verbs rather than reciprocal instances.

5.2 Affective value classes

Another interesting possibility is to group the reciprocal eventualities together based

on their affective value: { positive (Good), negative (Bad), neutral}.
We incorporate this attribute into our HMM-based method above by associating

each class z with both a distribution over verbs and a distribution over affective

values. Thus, in the generative process, after choosing a class z one independently
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Fig. 1. A sample of verb classes induced when running our transition model with 16 classes.

The words correspond to the 10 words with the highest value of P (verb|class). The directed

arrows correspond to the probability of transitioning from one class to the other.

samples a verb e from P (e|z) and an affective value f from P (f|z), which has a

Dirichlet(δ) prior.

We also introduce a parameter λ that determines the probability that f is actually

drawn from P (f|z), while (1 − λ) would be the probability that f is chosen at

random. This helps account for noise in our subjectivity lexicon. For this procedure

we used the Subjectivity Clues lexicon (Wilson et al. 2005), which provides 8,220

entries, where content words are labeled with their corresponding affective value.

Thus, the probability of generating an affective value and an eventuality (f, e) is

P (f, e) =

|Z |∑
k

P (z = k|zprev)
(
λP (f|z = k) + (1 − λ)

1

F

)
P (e|z = k) (6)

where F is the number of possible affective values (in our case, 3).

The Gibbs sampling update equation is

P (zio = j, zir = k|eo,i = a, er,i = b, fo,i = c, fr,i = d, z−i, α, β) ∝

(nzo=j + γ) ×
nz=jeo=a

+ β

n
z=j
eo=∗ + Voβ

× nzr=k + γ

nzo=j + Cγ
×

nz=ker=b
+ β

nz=ker=∗ + Vrβ

×
(

(1 − λ)

(
1

F

)
+ λ

n
z=j
f=c + β

n
z=j
f=∗ + Fδ

)
×

(
(1 − λ)

(
1

F

)
+ λ

nz=kf=d + β

nz=kf=∗ + Fδ

)
(7)

In the case that a verb’s affective value is not known, we simply ignore this

component and compute P (z|eo, er) as we do in the previous section. In other words,

λ = 0 in these cases.

Aside from empirical analyses, a potential use for this model is to predict the

affective value of words whose value is unknown. Once the model is learned, we can

compute P (f|word) by marginalizing across all classes. That is,

P (f|word) =

C∑
z

P (f|z)P (z|word) (8)

where P (z|word) = P (word|z)P (z)
P (word)

by Bayes theorem (Mitzenmacher and Upfal 2005).
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Figure 2 shows a sample of clusters induced under this model with twelve classes

along with their most probable affective value and some of the transitions between

them. It is important to point out that the distribution over affective values is

computed only from the verbs where this value is in the subjectivity lexicon.

Figure 2 shows that the class on the far left is positive with forgive as the top verb

and the class on the far right is negative with hate as the top verb. In what concerns

the two classes in the middle, both have to do with (usually physical) confrontation,

but the one on the left (with {ignore, slap, dump}) seems to be milder – so, it is more

likely to be reciprocated by the forgiveness class than the hate class. Conversely,

the confrontation class on the right (with {hit, attack, kill}) is more likely to be

reciprocated by the hate class than the forgiveness class.

5.3 Gender differences

The pairwise clustering method proposed above can also be extended to model

gender differences – specifically, one would like to compare how men and women

reciprocate.

We have previously explained how topic models like pLSA and LDA can be used

to cluster words by distributional similarity, which relates to our verb clustering. The

cross-collection mixture model (Zhai et al. 2004) and cross-collection LDA (ccLDA)

(Paul and Girju 2009) extend these topic models to be applied across multiple

collections of text, by allowing each topic to be associated with a global language

model as well as a model for each collection. Thus, within each topic one can learn

what is common to all collections as well as what is unique to each collection.

In previous work we showed that ccLDA can be very useful in discovering different

perspectives and cultural differences in text collections (Paul and Girju 2009). If we

apply this idea to our clustering of reciprocal verbs, we can compare and contrast the

verbs associated with each gender and see if one gender is more likely to reciprocate

in certain ways. In our model, each gender is analogous to a text collection, and

within each cluster there are verbs that are unique to each gender as well as those

that are common to both.

Under this model, each reciprocal pair is assigned a class z as well as a binary

variable x, which denotes whether er was drawn from the gender-dependent or

gender-independent distribution. The idea behind this model is that a reciprocal

instance is generated by first choosing a class z from P (z), then choosing a verb eo
from P (eo|z). Then we choose a value (0 or 1) for x from P (x|z), which determines

whether the er verb is chosen from the gender-neutral or gender-specific distribution.

If x = 0, then we choose er from P (er|z, x = 0), otherwise if x = 1, we choose this

from the gender-specific distribution according to P (er|z, x = 1, gender).

The complete generative process is as follows:

(1) Draw a multinomial distribution of classes θ from Dirichlet(α).

(2) Draw a multinomial distribution of eo verbs φoz from Dirichlet(β).

(3) Draw a gender-independent multinomial distribution of er verbs φrz from

Dirichlet(β) for each class z.
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Table 4. A sample of reciprocal classes induced when running our gender differences

model with 12 classes. The words correspond to the 10 words with the highest value of

P (eo|class), P (er|x = 0, class), P (er|x = 1, class, male), and P (er|x = 1, class, female).

The verbs in the gender-specific distributions represent ways in which the respective

genders are more likely to reciprocate than the other in this class

eo er – Both er – Male er – Female

tell respect bend forgive

respect believe beat reject

embarrass bang attack maintain

greet divorce divorce hear

cheat reject revile believe

avoid beat rape respect

stop greet resent advise

slap remember strangle awe

nag bend manipulate ¬ shop

remember kill tell ¬ hit

(4) Draw a gender-dependent multinomial distribution of er verbs σzg from

Dirichlet(δ) for each class z and each gender g.

(5) Draw a binomial distribution ψz from Beta(γ0, γ1) for each class z.

(6) For each pair of eventualities si

(a) choose a gender g,

(b) sample a class z from θ,

(c) sample x from ψz ,

(d) sample eo from φoz ,

(e) If x = 0, sample er from φrz;

else if x = 1, sample er from σzg .

The Gibbs sampling update equation is

P (zi = k, xi = 0|eo,i = a, er,i = b, z−i, α, β, γ) ∝

(nzi=k∗ + α) × nz=kx=0 + γ0

nz=k∗ + γ0 + γ1
×

nz=keo=a
+ β

nz=keo=∗ + Voβ
×

n
z=k,x=0
er=b

+ β

n
z=k,x=0
er=∗ + Vrβ

(9)

P (zi = k, xi = 1|gi = j, eo,i = a, er,i = b, z−i, α, δ, γ) ∝

(nzi=k∗ + α) × nz=kx=1 + γ1

nz=k∗ + γ0 + γ1
×

nz=keo=a
+ β

nz=keo=∗ + Voβ
×

n
z=k,x=1,g=j
er=b

+ δ

n
z=k,x=0,g=j
er=∗ + Vrδ

(10)

It is important to note that we use a Beta prior for P (x), which is simply the

bivariate analog of the Dirichlet distribution.

To determine the gender, we considered the reciprocal instances where the subject

of the er eventuality is he or she. Table 4 shows a sample of these results with

modeling with twelve classes.

In general, it seems that men are more violent and aggressive, whereas women are

more forgiving. This depends on the reciprocal class, though. Consider the cluster
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whose eo words include punish, refuse, criticize, and reject. The top er words for men

are accept, hug, tolerate, and owe. On the other hand, the top er words for women

include cheat, dump, and despise. It seems that men are more forgiving in the face of

criticism and rejection, while women are more forgiving in response to cheating and

embarrassment. Furthermore, it seems that men and women are generally mutually

respectful; it is only when that respect is broken that their responses may differ.

Some verbs are more strongly associated with men (e.g., rape), and some verbs that

are more common to men, such as hire and arrest, are likely due to the prominence

of men in authoritative positions. The verb emasculate was common in the female

distributions (observation supported by its definition – cf. WordNet). Other words

that were frequently associated with women were nag and idolize.

5.4 Considering context

So far we have focused only on the modeling of the graph data (i.e., our network of

verbs linked by edges), and so the clustering approaches presented in the previous

subsections do not consider the context in which the verbs appear. A model that

takes into consideration the verbs as well as the words surrounding them would give

us new insights into the contexts under which certain types of reciprocal interactions

arise.

It is possible to combine the power of block models, which cluster nodes in graphs,

with topic models, which cluster words that appear in text. For example, in topic

modeling with network regularization (Mei et al. 2008), topic mixtures of documents

are assumed to be similar to the documents they are connected to in a network such

as the web. Relational topic models (Chang and Blei 2009) model both the text of

documents and the links between them.

We will use these ideas to construct a model of the reciprocal verb network as

well as of the words associated with each reciprocal pair. The joint modeling of

these components will help us to give more meaning to the reciprocal classes thus

induced.

We propose a model based on the clustering with transitions model that includes

both the reciprocal eventualities eo and er as well as their context window, defined as

the W words before the reciprocal pattern, the W words after the pattern, and any

words within the pattern itself, excluding the pronouns and the verbs eo and er . We

model the instances and their context window such that the words in the context

window are dependent on some context c. The verb class zo of eo depends on c and

the class zr of er depends on both c and zo. Furthermore, we say that some words

in the context window can come from some ‘background’ word distribution that is

independent of the context. This allows us to account for common words that do

not fit into any context, such as the and what.

To generate a reciprocal instance and a context window under this model, a

context c is first chosen according to P (c). The reciprocal classes are sampled from

P (z = i|c, zprev = 0) and P (z = j|c, zprev = i), and the eventualities are sampled from

P (eo|z = i) and P (er|z = j). Finally, the words of the context window are generated

independently. Each word is associated with a binary variable x, as was done in our
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gender differences model, which is sampled from P (x). If x = 0, then the word w

comes from the background distribution P (w|B), otherwise it is sampled from the

context’s word distribution P (w|c).
The complete generative process is as follows:

(1) Draw a multinomial distribution of contexts θc from Dirichlet(α) for each

context c.

(2) Draw a multinomial distribution of transitions πi,j,c from Dirichlet(δ) for each

pair of classes and each context c.

(3) Draw a multinomial distribution of verbs φz from Dirichlet(β) for each class

z ≥ 1.

(4) Draw a multinomial distribution of verbs σc from Dirichlet(β) for each class

c and for the background model.

(5) Draw a Bernoulli distribution ψ from Beta(γ0, γ1).

(6) For each instance

(a) sample a context c from θ,

(b) sample a class i from π0,i,c,

(c) sample a class j from πi,j,c,

(d) sample eo from φi and er from φj .

(e) For each word wk in the context window

(i) sample x from ψ, and

(ii) if x = 0, sample wk from σB;

else if x = 1, sample wk from σc.

During Gibbs sampling, for each instance si we sample a context ci, verb classes

zio and zir , and assignments of xj for each word in the context window using the

following equations:

P (ci = m|xi, zio = a, zir = b, c−i, α, β, γ) ∝

(nc=m + α)
nzo=a + δ

nc=m + Cδ
× nzr=b + δ

nzo=a,c=m + Cδ
×

∏
wj∈ai|xj=1

nc=mwj
+ β

nc=m∗ + Vcβ
(11)

P (zio = j, zir = k|ci = m, eo,i = a, er,i = b, z−i) ∝

nzo=j + δ

nc=m + Cδ
×

nz=jeo=a
+ β

n
z=j
eo=∗ + Veβ

× nzr=k + δ

nzo=j,c=m + Cδ
×

nz=ker=b
+ β

nz=ker=∗ + Veβ
(12)

P (xj = 0|si, ci = m,w−i) ∝ ns=ix=0 + γ0

ns=ix=∗ + γ0 + γ1
×

nc=Bwj
+ β

nc=Bwj
+ Vcβ

(13)

P (xj = 1|si, ci = m,w−i) ∝ ns=ix=1 + γ1

ns=ix=∗ + γ0 + γ1
×

nc=mwj
+ β

nc=mwj
+ Vcβ

(14)

Ve is the number of unique eventualities and Vc is the size of the vocabulary of

the context windows.

Table 5 shows a sample of contexts induced when running our model with twenty

verb classes, thirty contexts, and a context window of size W = 10. We also show
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Table 5. The top words in different context clusters as well as the ‘background’ model

for words that appear independently of any context. The words correspond to the top

value of P (word|context)

Background Context 1 Context 2 Context 3

said past hear greeted

love remember sheep dimly

know memories follow discharge

loved smiling voice quiet

don doubt jesus bedroom

first sped sea worshiped

say vain unto delight

man showed worthy women

tell hair satisfaction pleasure

think forgotten thy amused

mr cheeks christ passionately

father looking eternal ripened

the top words for the background model, which represents words that are likely to

appear independently of the context.

The words in each of the context clusters are fairly related. For example, Context

1 is clearly about memory, with words such as past, remember, and memories.

Furthermore, with words, such as hair, cheeks, and looking, we might infer that it is

specifically about remembering the way a person looks. As one might expect, this

context is most likely to transition to the verb class characterized by words such as

love, kiss, adore, and honor.

Context 2 is clearly biblical, with the presence of words like Jesus and Christ,

as well as older English words like thy and thou. This context is most likely to

generate an eo from the class characterized by know, admire, and obey, and it is most

likely to then reciprocate with the class, including verbs such as follow, ¬ blame, and

¬ want.

Context 3 is most likely to transition to the love and adoration class, which seems

sensible, with words like pleasure and passionately.

5.5 Presuppositions

Some of the identified reciprocal eventualities are presupposition-rich verbs –

i.e., they presuppose the existence of an original eventuality for which they are

performed ‘in return’. Identifying automatically such verbs would be useful for

semantic inference and behavior prediction.

Our dataset shows that some verbs, such as thank and forgive, necessarily

presuppose an original eventuality eo. Some verbs like hate strongly presuppose

an eo – unlike love, which most of the time is unconditional, one usually only hates

someone for something they did. As it may not be possible to distinguish if a

verb has this property necessarily using only our distributional approaches, we tried

instead to identify verbs that have this property to a reasonable degree.
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Table 6. The results of our presupposition discovery procedure and the presupposition

classes induced. The words correspond to the 10 words with the highest value of

P (eo|class) and P (er|class), and the er words can be said to presuppose an eo

Good–Good Bad–Good Bad–Bad

eo er eo er eo er

help thank do forgive do hate

support appreciate trouble pardon hurt blame

trust honor disturb excuse betray punish

do congratulate interrupt thank reject kill

thank bless insult console torture arrest

rescue praise deceive praise insult reproach

bless abandon reward mislead chastise

spare forget admire abandon resent

enlighten betray distract rebuke

pardon disappoint punish berate

enable eliminate criticize despise

A quick analysis of our dataset show that er seems to be more likely to have

this presupposition property in the for what and for vb-ing patterns than the others.

Following this hypothesis, these verbs were clustered such that we separate instances

that are more likely to appear in these two patterns than the others. This was done

with the basic pairwise clustering method under some constraints.

The clusters were initialized so that the instances from the for what and for vb-ing

patterns are placed into four clusters depending on the affective value of the verbs:

Good–Good, Bad–Bad, Bad–Good, and Good–Bad. Everything else was placed into

cluster 0. Everything that was initially placed into cluster 0 must remain there, but

the instances in clusters 1–4 can move between either their initial cluster or cluster 0.

Thus, instances that are more representative of the for what and for vb-ing patterns

will end up in clusters 1–4, while instances that are more like the rest of the corpus

will be separated out.

Table 6 shows the three significant clusters (the Good–Bad class did not yield

anything) induced by this procedure.

The er verbs can be said to have a strong presupposition property – Table 6 shows

ten words with the highest probability in that class, although two of the classes had

fewer than ten words that were ever assigned to them during sampling.

6 Experimental data and results

6.1 Data collection

While the Gutenberg and BNC collections are useful in obtaining the frequent

patterns, they do not contain a very large number of reciprocal eventuality pairs to

do meaningful clustering. We thus queried the web through Google to easily obtain

thousands of examples. We queried each of the top fifteen patterns and all pronoun
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combinations thereof (e.g. ‘they * us because we * them’) and took the top 1,000

results for each pattern/pronoun combination (15*30*1000).8 We then extracted the

clauses from the result snippets using the procedure outlined in the previous section

and obtained 10,822 pairs.9

To increase coverage, we also extracted these patterns from the Gutenberg corpus,

giving us an additional 2,561 instances, for a total of 13,443 instances (5,162 unique

instances).

We performed part-of-speech tagging (Tsuruoka and Tsujii 2005) and lemmatiza-

tion (Minnen et al. 2000) of the text before extracting the reciprocal verb pairs. Our

data contain 1,608 unique verbs.

6.2 Pattern discovery procedure

Since we wanted to see to what extent the fifteen most frequently occurring patterns

encode reciprocity, we selected a sample of ten pattern instances matched by each

pattern in the text collection obtained from the web. We presented the resulting 130

sentences (a few patterns were not frequent on the web, so we obtained a few less

than ten instances) to two judges who evaluated them as encoding reciprocity (‘yes’)

or not (‘no’). The judges agreed 97 per cent of the time. Moreover, only 2.3 per cent

of the 130 pattern instances did not encode reciprocity as agreed by both judges.

These statistics show that these patterns are highly accurate indicators of recipro-

city in English.

6.3 Unsupervised clustering

The Gibbs sampler should be run for some number of iterations until the distribution

is stationary – called the burn-in period – and then a number of samples has

to be collected and averaged. Some number of iterations (called the lag) should

pass between sample collection (Heinrich 2008). Unless otherwise specified, in our

experiments we ran our Gibbs samplers for 500 iterations, with a 300-iteration

burn-in period and a 20-iteration lag.

The selection of appropriate values for the parameters, such as the number of

clusters and the Dirichlet parameters (e.g., α, β), is done qualitatively. While there

are ways to automatically learn these parameters to optimize the data likelihood

(Wallach 2006; Li et al. 2007), it has been observed that increased likelihood does not

always produce better clusters in terms of semantic coherence (Chang et al. 2009),

which is what is important in this research. We thus use a ‘trial and error’ approach

to setting the parameters. As a starting point, we use the observation that 0.01 tends

to be a good Dirichlet parameter for distributions over words, and the Dirichlet

parameter for distributions over classes tends to be higher, around the order of 1.0

(Griffiths and Steyvers 2004). We then adjust these parameters as necessary until

8 This is because Google limits traffic. However, more instances can be acquired in the future.
9 The reciprocity dataset is available for download at our group’s webpage (Semantic

Frontiers): http://apfel.ai.uiuc.edu/resources.html
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the results are meaningful, as is often done in this type of unsupervised research

(Chang et al. 2009). Our evaluations rely on human judgments and it is not feasible

to have the judges evaluate results for every combination of parameters. Thus, we

selected the final parameters that yielded reasonable-looking clusters before passing

the results to the judges.

As for choosing the number of classes, we find that the results are very noisy when

using a large number of classes (e.g., fifty), and the clusters tend to be reasonably

coherent in the ten–twenty range. Qualitatively, we find that the same kinds of

clusters are induced with small variations of this number (e.g., ten vs. fifteen), so we

simply used varying values within this range in the different experiments.

6.3.1 Pairwise clustering

A sample of the clusters induced using twelve classes with the parameters α = 1.0

and β = 0.01 is shown in Table 3, which has been introduced in Section 5.

Cluster membership is defined as argmaxc P (eo|c) P (er|c). We presented the top

nineteen pairs of each cluster to two judges who were asked to identify each pair

as belonging to the cluster or not based on coherence; that is, all pairs labeled ‘yes’

appear to be related in some way. The judges agreed on 199 pairs out of which 182

were correct and 17 were incorrect (with a Kappa coefficient (Cohen 1960) of 0.50).

A big source of inter-annotator disagreement comes from the ambiguity of certain

verbs, which is a weakness of our limited representation. For example, without

additional information it is not clear how a pair like (let, do) might relate to other

pairs.

6.3.2 Clustering with transitions

A sample of these clusters induced using C = 16 classes with parameters δ = 1.0

and β = 0.01 is shown in Figure 1 introduced in Section 5.

To evaluate how well this approach clusters verbs together, we presented the

results (the top ten words in each cluster) of modeling with sixteen classes to two

judges. Of the sixteen clusters, the judges agreed that seven clusters were coherent

and four were incoherent.

To compare against a state-of-the-art baseline, we clustered our verb network via

spectral clustering, a popular graph-based clustering approach. We induced sixteen

clusters by minimizing the normalized graph cut, using the Graclus software10

(Dhillon et al. 2007). Each verb was assigned to exactly one cluster. We then ranked

the words in each cluster in descending order of frequency and showed the top

ten words to two judges. Of the sixteen clusters, the judges agreed that three were

coherent and nine were incoherent (with a Kappa score of 0.46).

This approach did induce some verb clusters that were found in the results of

our own models, such as classes representing hate, affection, and physical attacks.

10 http://www.cs.utexas.edu/users/dml/Software/graclus.html
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Table 7. All possible combinations of pairs of affective values and their associated

probabilities as found in the corpus. The numbers in the table correspond to conditional

probabilities P(rowi|colj). The Total column indicates the probability of each affective

class (P(rowi))

Good Bad Neutral Total

Good 0.90 0.18 0.29 0.63

Bad 0.09 0.82 0.08 0.29

Neutral 0.01 0.002 0.63 0.09

However, it found many clusters that lacked any semantic coherence, because of

strong-but-noisy connectedness between low-frequency verbs.

It is also important to note that any graph clustering baseline we might use would

not capture the reciprocal relations between verb clusters. Whereas our HMM-based

approach learns a matrix of transitions between classes, there is no information in

the spectral clustering output about which classes are likely to reciprocate other

classes (and indeed, this method assumes that the graph is undirected). While a

basic graph clustering algorithm might induce verb clusters, it would not model

reciprocity as we do in this research.

6.3.3 Clustering with affective value

Overall, 31.4 per cent of the verbs in our corpus were found in the subjectivity

lexicon, and 22.0 per cent of our reciprocal pairs had both words in the lexicon.

Table 7 shows all possible combinations of pairs of affective values and their

associated probabilities in the corpus. These values are computed for those pairs

where both words have known polarity.

As one might expect, each polarity class is most likely to be reciprocated by itself:

Good for Good and Bad for Bad (retaliation). Furthermore, it is more likely that

Good follows Bad (‘turn the other cheek’) than that Bad follows Good.

Figure 2, introduced in Section 5, shows a sample of classes induced under this

model with twelve classes with parameters α = 1.0 and β = δ = 0.01 along with

their most probable affective values and some of the transitions between them. We

set λ = 0.8. It is important to point out that the distribution of affective values is

computed only from the verbs where this value is in the subjectivity lexicon.

One way to evaluate this clustering method is to test its ability to predict the

affective value of the unknown words, as described earlier. Thus, we learn the model

with twenty classes and λ = 0.8, then compute P (f|word) for words that were not in

the subjectivity lexicon. For each affective class, we took the thirty words with the

highest value of P (fi|word), although some affective classes had fewer than thirty

words assigned to them.

The remaining seventy-five words were presented (in a random order) to two

judges to rate as positive (Good), negative (Bad), or neutral. The judges agreed on

fifty-one of the words (with a Kappa score of 0.49). The low agreement is mostly
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Fig. 2. A sample of verb classes induced when running our affective class model with 12

classes. The words correspond to the 10 words with the highest value of P (verb|class). The

directed arrows correspond to the probability of transitioning from one class to the other. At

the bottom of each class is its most probable affective value, P (aff|class).

due to disagreement over whether words are neutral or polar – for example, a

word like recognize could be seen as having a positive connotation, or it could

be considered neutral. In some situations, however, generic verbs, such as do and

come, have a positive connotation in reciprocal contexts – hence it is not completely

wrong to assume positive value for these verbs, as far as they are used in reciprocity

constructions with other verbs from a certain class. However, this issue of context-

dependent or context-independent affective values of verbs should be further studied.

The affective value of twenty-six words out of the total of fifty-one were correctly

identified by our procedure, while twenty-five were incorrect. However, seventeen

of these twenty-five incorrect words should have been neutral, which suggests that

this approach mainly fails at discriminating positive and neutral or negative and

neutral, rather than positive and negative. Of the twenty-five verbs that are positive

or negative, it correctly classified the seventeen verbs.

6.3.4 Clustering gender differences

For these experiments, we could consider interactions between men/women and any

other person, but we find that it is more interesting to see how men and women

interact with each other. Thus, we consider instances where each participant is male

and female (e.g., ‘he * her because she * him’). Table 4 shows a sample of these

results with modeling with twelve classes with parameters α = 1.0, β = δ = 0.01,

and γ0 = γ1 = 1.0. This Table was introduced in Section 5 where we also detailed

our observations obtained from these experiments.

6.3.5 Clustering with context

When experimenting with this model, we ran the Gibbs sampler for 1,200 iterations,

with a burn-in period of 800 iterations and a fifty-iteration lag.
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Fig. 3. An example of a word distribution of two contexts and their transition to verb

classes. The words correspond to the 10 words with the highest value of P (word|context) and

P (verb|class). The transitions correspond to P (classo|context) and P (classr|classo, context).

Table 5, introduced in Section 5, shows a sample of contexts induced when running

our model with twenty verb classes, thirty contexts, and a context window of size

W = 10 (with α = 1.0, β = σ = 0.01, δ = 0.1, γ0 = γ1 = 1.0). We also show the top

words for the background model, which represents words that are likely to appear

independently of the context.

The way a verb class is reciprocated can depend on the context, as seen in

Figure 3. The Figure shows two different contexts – Context A is about trust

and understanding; Context B seems to be about asking questions and perhaps

requesting permission. Two reciprocal verb classes, X and Y, are shown in the figure.

Both contexts are most likely to generate an eo from Class X, which is also about

trust and understanding. Given Context A, Class X will most likely be reciprocated

by itself. However, given Context B, Class X will most likely be reciprocated by

Class Y, which seems to indicate a communicative response.

We also experimented with a window size W = 50, which did produce a few

similar contexts, such as the biblical one. Most of the context clusters become much

noiser, perhaps because it is harder to find long-range relatedness with such a small

corpus size.

In general, this procedure struggles due to our corpus size – most of the Google

snippets contain only the patterns themselves, and thus the context window for those

instances consists of only the words (except for eo, er , and the pronouns) within the
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short patterns, which is not enough. This leaves us with less than 3,000 instances

that have a complete context window, and because these come from such varied

sources, our data is contextually very sparse. Thus, our approach fails to find many

consistent and coherent clusters of words for these contexts.

However, we offer these examples as evidence that our model is capable of

discovering such clusters, provided there is enough data to statistically discover

strong correlations.

6.4 Discovering presuppositions

Table 6, already introduced in Section 5, shows the three significant clusters (the

Good–Bad class did not yield anything) induced by this procedure (with α = 1000.0

and β = 0.01). The large α value is used to help even out P (z), otherwise P (z = 0)

is so large that few verbs make their way into clusters 1–3.

To judge the effectiveness of this approach, we presented the verbs identified

through this process as having presuppositions (thirty-five unique verbs) to two

judges, who were asked to rate each verb as ‘yes – this verb has presuppositions to

some degree’, or ‘no – this verb does not presuppose anything’. The judges disagreed

on four of the thirty-five verbs. Moreover, when considering the remaining thirty-one

verbs, the judges agreed that one verb did not presuppose anything and the other

thirty do have presuppositions.

Indeed, most of the verbs identified by this approach have presuppositions,

although certainly the recall is not perfect. For example, a verb such as retaliate

clearly has this property, but it only appears once in our entire corpus, and thus

cannot be distinguished from noise – the sparsity of our dataset is a limiting factor in

this regard. Nonetheless, this seems to be a precise approach for this problem. Even

love, which does not presuppose anything, was separated out from these clusters,

even though it has a very high frequency in these patterns.

To estimate the recall, we randomly sampled 200 verbs from our lexicon and

asked two judges to label each verb to indicate if the verb presupposes an original

eventuality. The judges agreed on 159 verbs of which twenty-seven were unanimously

identified as presupposing an eventuality (13.5 per cent). We thus estimate that there

are 217 verbs in our data that presuppose an eventuality (that is, 13.5 per cent of

the 1,608 unique verbs in our data). As our system identified thirty-five verbs, we

estimate the recall as 16 per cent. Thus, our proposed procedure is a high-precision,

low-recall approach.

We see that some verbs appear in the Bad–Good class although they really

belong in the Good–Good class. This was mostly due to some mislabeled words in

the subjective lexicon and occasional misclassification of the verb do. However, the

verbs with the highest probability in this class {forgive, pardon, excuse} are correctly

classified, and the other verbs are nonetheless good examples of the presupposition

property.

Furthermore, most of the positive verbs discovered have the presupposition

property necessarily, whereas many of the negative verbs only have this property

strongly but not necessarily. We also see that there are fewer positive verbs with a
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presupposition property, which suggests that people are generally altruistic (because

a positive action does not necessarily presuppose that it was performed in return for

something), and people are generally not negative unless prompted to be negative

in return for another negative action (i.e., retaliation).

7 Discussion and conclusions

In this paper we presented an analysis of the concept of reciprocity as expressed

in English and a way to model it. Specifically, we introduced an algorithm that

semi-automatically discovers patterns encoding reciprocity based on a set of simple

yet effective pronoun templates. We then ranked the identified patterns according

to a scoring function and selected the most frequent ones. Using these patterns we

queried the web and the Gutenberg corpus and extracted 13,443 reciprocal instances

that represent a broad-coverage resource. Unsupervised clustering procedures were

performed to generate meaningful semantic clusters of reciprocal instances. We also

presented several extensions to these models (along with insightful observations) that

incorporate meta-attributes like the verbs’ affective value, study gender differences

between participants, consider the textual context of the instances, and automatically

discover verbs with certain presuppositions.

The experimental results provide nice insights into the problem, but can be further

improved. For example, the pattern discovery procedure starts with the simplifying

assumption that the participants to reciprocal eventualities are identified by personal

pronouns. While this procedure ensures a high accuracy of the obtained patterns, it

has a limited coverage. However, our pronoun templates were used just as a starting

point to facilitate the discovery of the reciprocal patterns. Once these patterns

are applied on text, they can capture reciprocal relationships between people as

identified by any other named entities, provided we have a good tool that identifies

the subject and the direct/indirect objects and a good named entity recognizer to

identify people.

We also noticed that discovering polarity words is not always enough to capture

the affect associated with each eventuality. Thus, the text needs to be further

processed to identify speech acts corresponding to each clause in the reciprocal

patterns. For example, words such as ‘sorry’ can be classified as negative, while the

entire clause ‘I am sorry’ captures the speech act of apology, which is associated

with good intentions. As a future work, we will recluster the reciprocity pairs taking

into consideration such speech acts.

Another observation concerns the reciprocity property of magnitude (cf. Jackendoff

2005) or equivalence of value between two eventualities. Most of the time reciprocal

eventualities have the same or similar magnitude, as the patterns identified indicate

a more or less equivalence of value – i.e., hugs for kisses and thanks for help. Most

of these constructions do not focus so much on the magnitude, but on the order in

which one eventuality (the effect) is a reaction to the other (the cause). However,

a closer look at our data shows that there are also constructions that indicate this

property more precisely. One such example is ‘C1 as much as C2’, where even a
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negation in C1 or C2 might destroy the magnitude balance (e.g., ‘she does not love

him as much as he loves her’).

All these issues have to be studied in more detail. This kind of study is very

important in the analysis of people’s behavior, judgments, and thus their social

interactions. One possibility, for example, would be to apply the reciprocity model

for an in-depth empirical study of human sociocultural interactions in various text

repositories in English or other natural languages. Thus, this research will provide a

novel way of analyzing sociocultural interactions in language with direct application

to the analysis of social groups and communities and it will bring new insights into

the sociocultural aspects of these communities. The fields of sociology and behavior

psychology have studied such issues for a long time. However, the connection to

NLP has not been established yet.

Reciprocity is very important in studying other characteristics of social interaction

as well. Recent discussions of the evolution of social intelligence, and of language

itself, also place reciprocity at the center stage (Calvin and Bickerton 2000; Waal

2001). However, if theories of cognitive evolution are to draw on assumed reasoning

about reciprocity, it is important to know which linguistic possibilities underlie this

concept without restricting these models to simplistic notions drawn simply from

a couple of constructions as done so far in the linguistics literature. The wide

variety of ways English, and any other natural language for that matter, expresses

reciprocity provides a rich resource for exploring alternative conceptualizations of

this notion. Goody (1995), for example, claims that some of the ways languages

encode reciprocity are motivated by speakers’ models of the intentions of others,

and the social relations they contract, in addition to their observed actions. Thus,

we believe that any extension of the reciprocal model proposed in this paper should

take such cognitive factors into account.

Furthermore, according to our preliminary experiments on English reciprocity,

chained and asymmetrical extensions of reciprocal constructions are particularly

frequent in representing certain types of co-operative social involvement, yet these

factors have generally been neglected in the literature. Thus, a potential line of

research would be to identify and analyze the sets of expressions that allow the

formation of transitive chains of reciprocal behaviors and actions, which can be

extracted from large text collections.

A further issue that has not been properly explored is the role of sociocultural

models in licensing extensions of reciprocal relations in particular contexts. Semantic

extensions like these build on culture-specific assumptions about the types of

reciprocity, identity, and collectivity assertable of different social categories. Such a

research direction would extend our knowledge of such constructions, and enable

their investigation in further detail with wide empirical coverage.

Last, but not the least, we believe that this line of research has the potential

to investigate the application of current NLP technologies and the development of

new technologies for social sciences. Such a direction might have a transformative

impact on social science research by enabling social scientists to use sophisticated

NLP tools to analyze large data collections and test hypotheses, which would be

difficult to test otherwise.
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