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SPRITE: STRUCTURED-PRIOR TOPIC MODELS TOPIC STRUCTURES CONSTRAINTS

Different structures are induced by placing
constraints on the values of a,B, such as
indicator vector constraints:

B.e{0.1}.Ve Y B.=1

SPRITE is based on LDA, but the Dirichlet priors are log-linear functions of
underlying components. The components provide an additional level of
latent structure that can model relations between topics.
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