human language technology nter of excellence

SPRITE: Generalizing Topic Models with Structured Priors Michael J. Paul Mark Dredze

Department of Computer Science and Human Language Technology Center of Excellence Johns Hopkins University, Baltimore, MD USA

SPRITE: STRUCTURED-PRIOR TOPIC MODELS

SPRITE is based on LDA, but the Dirichlet priors are log-linear functions of underlying components. The components provide an additional level of latent structure that can model relations between topics.

- 1. Generate hyperparameters: α , β , δ , ω
- 2. For each document m, generate parameters:
 - (a) $\tilde{\theta}_{mt} = \exp(\sum_{c=1}^{C^{(\theta)}} \alpha_{mc} \,\delta_{ct}), 1 \le t \le T$ (b) $\theta_m \sim \text{Dirichlet}(\tilde{\theta}_m)$
- 3. For each topic t, generate parameters:
 - (a) $\tilde{\phi}_{tv} = \exp(\sum_{c=1}^{C^{(\phi)}} \beta_{tc} \,\omega_{cv}), 1 \le v \le V$ (b) $\phi_t \sim \text{Dirichlet}(\phi_t)$
- 4. For each token (n, m), generate data:
 - (a) Topic (unobserved): $z_{mn} \sim \theta_m$
 - (b) Word (observed): $w_{mn} \sim \phi_{z_{mn}}$

$\omega_c \mid c$ th to $\beta_t \mid t$ th to cth d $\alpha_m \mid m$ th ($\phi_t \mid t$ th to $\theta_m \mid m$ th $C^{(\phi)}$ Numb $C^{(heta)}$ Numl Numb $M \mid$ Number of documents

RELATED MODELS

Dirichlet-multinomial regression (Mimno and McCallum, 2007) α are feature weights (supervision) δ are regression coefficients Pachinko allocation (Li and McCallum, 2006) α behave like supertopic weights lpha δ behave like supertopic priors Factorial LDA (Paul and Dredze, 2012) B is transpose of δ Shared components topic models (Gormley et al., 2012) ω behave like components • B are binary • $\phi = \phi$ Sparse additive generative models (Eisenstein et al., 2011) ω are sparse

- B are pre-defined
- $\phi = \phi$

Hyperparameters	
opic component (vector over words)	
opic's component coefficients	
ocument component (vector over topics)	
documents's component coefficients	
Parameters	
opic's distribution over words	
document's distribution over topics	
Model size	
ber of topic components	
ber of document components	
ber of topics	
Data size	
ber of documents	

Number of tokens in *m*th document

δ,ω: α, β

Components can be combined in many different ways to form priors.

components:

- parent component)

- $\delta_k^{(P)} = \beta_k^{(P)}$

	Debates			Reviews		
Model	Perplexity	Prediction error	Coherence	Perplexity	Prediction error	Coherence
Full model	† 1555.5 \pm 2.3	$^{\dagger}0.615 \pm 0.001$	-342.8 ± 0.9	$^{\dagger}1421.3 \pm 8.4$	† 0.787 \pm 0.006	-512.7 ± 1
Hierarchy only	$^{\dagger}1561.8 \pm 1.4$	0.620 ± 0.002	-342.6 ± 1.1	$^{\dagger}1457.2 \pm 6.9$	$^{\dagger}0.804 \pm 0.007$	-509.1 ± 1
Perspective only	$^{\dagger}1567.3 \pm 2.3$	$^{\dagger}0.613\pm0.002$	-342.1 ± 1.2	† 1413.7 \pm 2.2	$^{\dagger}0.800 \pm 0.002$	-512.0 ± 1
LDA	1579.6 ± 1.5	0.620 ± 0.001	-342.6 ± 0.6	1507.9 ± 2.4	0.846 ± 0.002	-501.4 ± 1

Sprite improves over several baselines (a sample is shown). Models with more structure are generally more predictive than those with less. Structured priors for topics, but not documents, improve coherence.

Code available: http://cs.jhu.edu/~mpaul

TOPIC STRUCTURES

Different structures are induced by placing **constraints** on the values of α , β , such as indicator vector constraints:

We can **relax** these constraints for easier optimization, allowing real values but using a sparsity-inducing prior:

can tighten these constraints during We optimization using **annealing**.

EXAMPLE: MODELING PERSPECTIVE AND TOPIC HIERARCHIES

CONSTRAINTS

$\beta_{tc} \in (0,1); \quad \beta_t \sim \text{Dirichlet}(<1)$