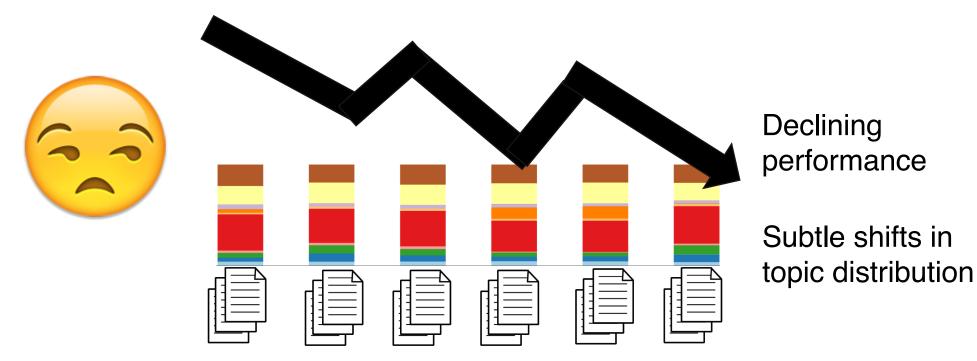
Examining Temporality in Document Classification

Xiaolei HuangMichael J. PaulUniversity of Colorado Boulder


Examining Temporality in Document Classification

or

Why is my classifier getting worse over time?

Why is my classifier getting worse?

- The data distribution has changed...
 - Is there anything systematic about how it changes?
 - Is there anything we can do to adapt to temporal changes?

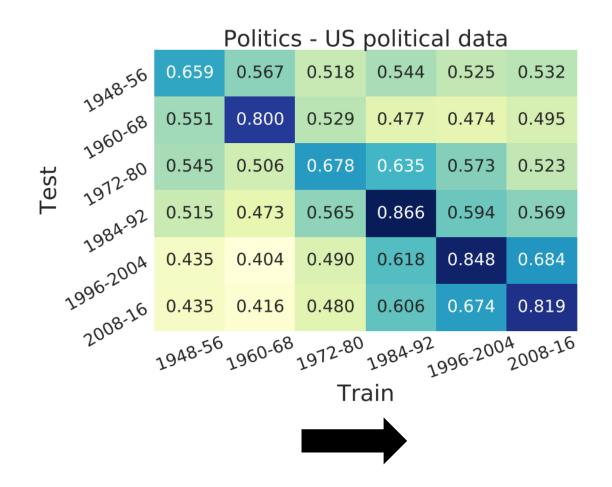
Experiments

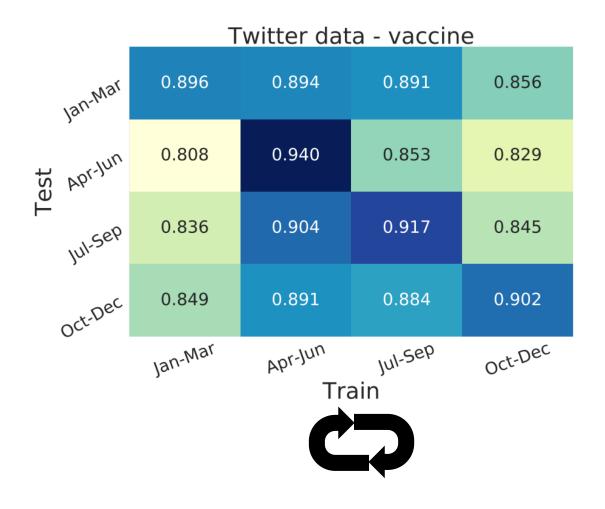
- Two types of time periods:
- Seasonal
 - Repeat across years (e.g., time of year)
- Non-seasonal
 - No repetition (e.g., spans of years)

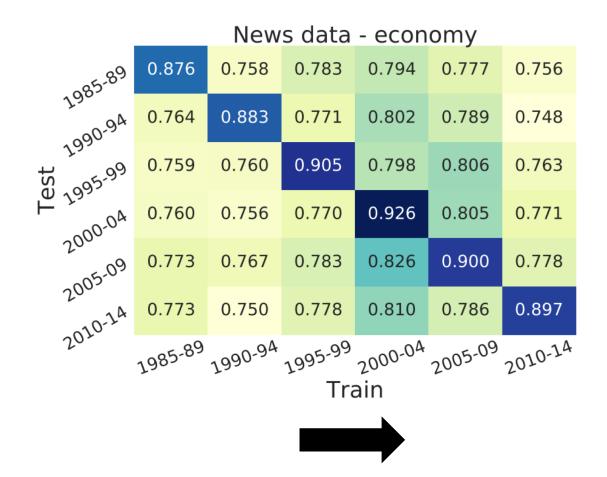
Experiments

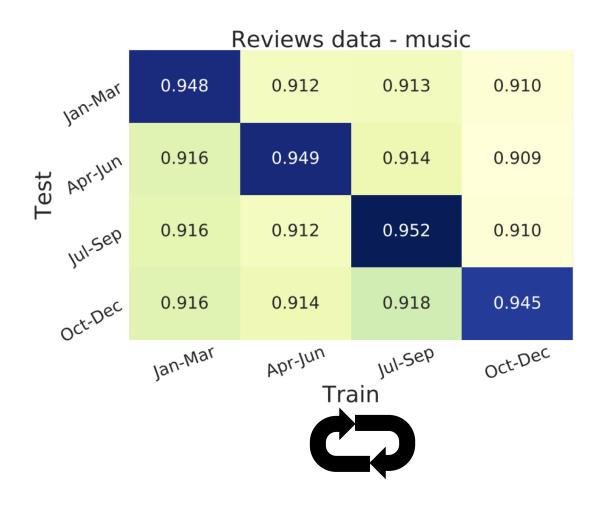
- Binary classification
 - Logistic regression, n-gram features
- Six datasets, each grouped into 4-6 time periods

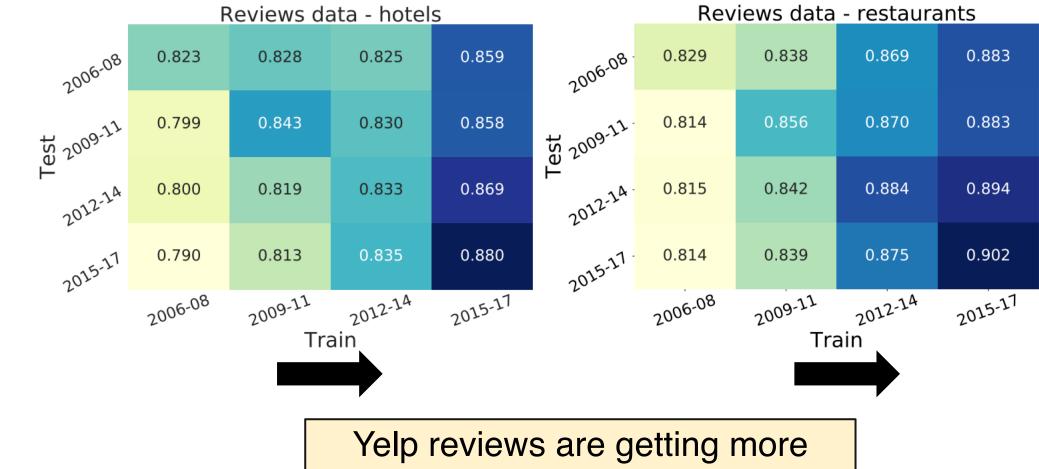
Dataset	Time intervals (non-seasonal)	Time intervals (seasonal)
Reviews (music)	1997-99, 2000-02, 2003-05, 2006-08, 2009-11, 2012-14	Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec
Reviews (hotels)	2005-08, 2009-11, 2012-14, 2015-17	Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec
Reviews (restaurants)	2005-08, 2009-11, 2012-14, 2015-17	Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec
News (economy)	1950-70, 1971-85, 1986-2000, 2001-14	Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec
Politics (platforms)	1948-56, 1960-68, 1972-80, 1984-92, 1996-2004, 2008-16	n/a
Twitter (vaccines)	2013, 2014, 2015, 2016	Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec




Why is my classifier getting worse?


- The data distribution has changed...
 - Is there anything systematic about how it changes?
 - Is there anything we can do to adapt to temporal changes?


Analysis:


- Train and test on each time period
 - Measure how performance drops when the test period is different
- Balanced so each time period has same # of documents

informative over time?

Takeaways:

- This type of analysis can reveal characteristics of corpus
- Unanswered: *why* does performance vary?

Why is my classifier getting worse?

- The data distribution has changed...
 - Is there anything systematic about how it changes?
 - Is there anything we can do to adapt to temporal changes?

Idea:

- Address this as a **domain adaptation** problem
- Treat explicitly-defined time periods as domains

Approach:

• Feature augmentation method from Daumé III (2007)

Approach:

• Feature augmentation method from Daumé III (2007)

Photo via @ChrisVVarren

Domain-specific copies of the feature set:

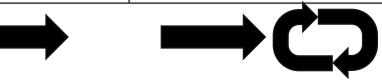


• Straightforward to apply to seasonal features:

Data (Seasonal)	Baseline	Adaptation
Reviews (music)	.901	.919
Reviews (hotels)	.867	.881
Reviews (restaurants)	.874	.898
News (economy)	.782	.782
Twitter (vaccines)	.881	.880

• How to use in non-seasonal settings?

- How to use in non-seasonal settings?
 - Separately weigh domain-specific features



- How to use in non-seasonal settings?
 - During training: weigh domain-specific features differently
 - Can also combine with seasonal domains
 - 3 copies of each feature (general, year-specific, season-specific)
 - Simulating performance on future data:
 - Train in initial time periods
 - Tune on second-to-last period
 - Test on final time period

• How to use in non-seasonal settings?

Data (Non-seasonal)	Baseline	Adaptation	Adapt.+seasons
Reviews (music)	.895	.924	.910
Reviews (hotels)	.886	.892	.920
Reviews (restaurants)	.831	.879	.889
News (economy)	.763	.780	.859
Politics (platforms)	.661	.665	n/a
Twitter (vaccines)	.910	.903	.920

Takeaways:

- Simple-to-implement adaptation can make classifiers more robust across time
- Suggestion: tune hyperparameters on heldout data from the *chronological end* of your corpus (cf. cross-validation)
 - Can lead to better performance on future data

Thank you!

Questions?

• Code:

https://github.com/xiaoleihuang/Domain Adaptation ACL2018

