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Introduction

Social media text can be analyzed to understand population-level
attributes

Public health [1, 4, 6]
Political sentiment [5]

Social media data can augment and complement traditional
survey data

Advantages: large scale, real time, low cost
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Introduction

Two related tasks of interest:

Prediction: estimating survey values for populations from social
media features

Useful for surveys with limited resources,
e.g., gaps in time or geography

Analysis: summarizing public opinions through social media
content analysis

What text features are correlated with survey values?

Challenge: how to train models that use features at the document level
but make predictions at the population level?

Collective supervision: supervision is given at the level of a
collection of documents, rather than individual documents

e.g., proportion of population within each US state
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Introduction

Topic models can help:

Prediction: estimating survey values for populations from social
media features

Topic models can learn low-dimensional, generalizable features
that can be used in predictive models

Analysis: summarizing public opinions through social media
content analysis

Topic models are interpretable: we can better understand public
opinion if we can see which topics are correlated with surveys

Challenge: how to train topic models to learn correlations with
surveys?

This talk: modify topic models to incorporate collective supervision
We extend different types of topic models in different ways,
and compare
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Latent Dirichlet Allocation (LDA)
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θ̃mk = exp(bk ); θm ∼ Dirichlet(θ̃m)

φ̃kv = exp(bv );φk ∼ Dirichlet(φ̃k )

zmn ∼ θm;wmn ∼ φzmn
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Supervised LDA (Downstream-sLDA)
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Supervised LDA (sLDA) [2]
zmk is the average proportion of topic k in document m
ym ∼ N (ηb + ηT zm, σ

2
y )
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Collectively Supervised LDA (Downstream-collective)
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Let z jk be the average proportion of topic k in collection j
yj ∼ N (ηb + ηT z j , σ

2
y )

Supervised LDA is a special case of this, where each document
has its own unique collection ID
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Dirichlet Multinomial Regression (Upstream)
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Dirichlet-multinomial regression (DMR) [3]
αm = ycm , feature value associated with document’s collection cm

θ̃mk = exp(bk + αmηk ); θm ∼ Dirichlet(θ̃m)

φ̃kv = exp(bv );φk ∼ Dirichlet(φ̃k )
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DMR with adaptive supervision (Upstream-ada)
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αm ∼ N (ycm , σ
2
α)

θ̃mk = exp(bk + αmηk )

φ̃kv = exp(bv );φk ∼ Dirichlet(φ̃k )

Document value can deviate from given input – can help infer
likely values when supervision is noisy or missing.
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DMR with word priors (Upstream-words)
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αm = ycm

θ̃mk = exp(bk + αmηk )

φ̃kv = exp(bv + ωvηk )

Supervision affects priors over words. Extension to DMR known
as SPRITE [7].
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DMR + adaptive + word prior (Upstream-ada-words)
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Combined upstream model
αm ∼ N (ycm , σα)

θ̃mk = exp(bk + αmηk )

φ̃kv = exp(bv + ωvηk )
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Surveys

Behavioral Risk Factor Surveillance System: annual survey by US
federal government to learn about health/behavior of population.
We selected three questions from BRFSS phone surveys:

Guns: Do you have a firearm in your house? (2001)
Vaccines: Have you had a flu shot in the past year? (2013)
Smoking: Are you a current smoker? (2013)

Survey responses are aggregated at the level of US state.
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Twitter Data

Dataset Vocab BRFSS
Guns 12,358 Owns firearm

Vaccines 13,451 Had flu shot
Smoking 13,394 Current smoker

100,000 tweets per dataset (filtered by relevant keywords)
collected between Dec. 2012 - Jan. 2015

Identified as English using langid
https://github.com/saffsd/langid.py

Stopwords removed and low-frequency tokens excluded
Location inferred using Carmen
https://github.com/mdredze/carmen-python
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Supervision

For each dataset:

Each collection is defined as the set of tweets per US state
50 collections

Each collection’s yc value is the proportion respondents answering
“Yes” to the BRFSS question

Predicting survey values:
L2-regularized linear regression model
Features: mean topic distributions θ per collection
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Experiment Details

Lots of hyperparameters – selected hyperparameters that
maximized perplexity on heldout sample
Optimized each model using Spearmint:
https://github.com/JasperSnoek/spearmint

Fit models using Gibbs sampling with AdaGrad for parameter (η)
optimization
Prediction task tuned with 5-fold cross validation: 80% train, 10%
dev, 10% test.
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Results

Features Model Guns Vaccines Smoking
RMSE Perplexity RMSE Perplexity RMSE Perplexity

None LDA 17.44 2313 (±52) 8.67 2524 (±20) 4.50 2118 (±5)
Survey Upstream 15.37 1529 (±12) 6.54 1552 (±11) 3.41 1375 (±6)

Upstream-words 11.50 1429 (±22) 6.37 1511 (±57) 3.41 1374 (±2)
Upstream-ada 11.48 1506 (±67) 5.82 1493 (±49) 3.41 1348 (±6)
Upstream-ada-words 11.47 1535 (±28) 7.20 1577 (±15) 3.40 1375 (±3)
Downstream-SLDA 11.52 1561 (±22) 11.22 1684 (±7) 3.95 1412 (±3)
Downstream-collective 12.81 1573 (±20) 9.17 1684 (±6) 4.35 1412 (±4)
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Use Case – Support for Universal Background Checks

UBCs were a big US political issue in 2013, when national gun
control legislation was floated
We collected surveys on support for UBCs for 22 states from
various polls (mostly Public Policy Polling)
Baseline: use older 2001 survey of proportion households
containing a firearm
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Use Case – Support for Universal Background Checks

Features Model RMSE (2001 Y included) RMSE (2001 Y omitted)
None No model 7.26 7.59

Bag of words 5.16 7.31
LDA 6.40 7.59

Survey Upstream-ada-words 5.11 5.48
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Use Case – Support for Universal Background Checks
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Code/Data

Code and Data:
https://bitbucket.org/adrianbenton/sprite/

UBC Predictions:
https://github.com/abenton/collsuptmdata
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Questions?
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