CHALLENGES IN INFLUENZA FORECASTING AND OPPORTUNITIES FOR SOCIAL MEDIA

MICHAEL J. PAUL, MARK DREDZE, DAVID BRONIATOWSKI

NOVEL DATA STREAMS FOR INFLUENZA SURVEILLANCE

- New technology allows us to analyze new types of data to infer influenza prevalence
 - Especially data from the Web
- Most (in) famously Google Flu Trends
- Many other promising sources:
 - Social media (especially Twitter)
 - Mobile apps
 - Wikipedia

WHAT ABOUT FORECASTING?

- Detection is easy and utility is limited
 - Reliable **forecasting** is important for making preparations and allocating resources

Google Flu has been shown to improve forecasting

- Shaman and Karspeck (2012)
- Nsoesie, Marathe, Brownstein (2013)
- Dugas et al. (2013)

Social media hasn't been evaluated yet

CDC PREDICT THE FLU CHALLENGE

CDC Competition Encourages Use of Social Media to Predict Flu

November 25, 2013 — CDC has launched the "Predict the Influenza Season Challenge," a competition designed to foster innovation in flu activity modeling and prediction. The registrant who most successfully predicts the timing, peak and intensity of the 2013-2014 flu season using social media data (e.g., Twitter, internet search data, web surveys) will receive an award of \$75,000 and CDC recognition. Full details of the contest requirements – including eligibility rules, how to enter the contest, and scoring – are available via the official contest announcement at https://federalregister.gov/a/2013-28198 .

- Contest to forecast the 2013-14 flu season by augmenting existing surveillance with Web data
- Three metrics:
 - Start of season
 - Peak of season
 - Intensity of season (peak rate and duration)

CDC PREDICT THE FLU CHALLENGE

INFLUENZA DATA

So what exactly are we trying to predict?

ILINet

- CDC-run network of thousands of US providers
- Hospitals report % of outpatients seen for influenza-like illness
- Weekly reports of estimated ILI prevalence
- Most commonly used flu metric
- Data is lagged by a week
 - Real time surveillance doesn't exist through traditional means
 - This is why novel data streams can help

FORECASTING MODEL

- Forecasts and current-week nowcasts can be produced using standard time series models with the lagged ILINet data
- Basic autoregressive model:

$$y_{w+k} = \alpha_1 \tilde{y}_{w-1} + \alpha_2 \tilde{y}_{w-2} + \alpha_3 \tilde{y}_{w-3}$$

- This works quite well
 - Especially for nowcasting

FORECASTING MODEL

Can we improve this with social media data?

- Twitter can give estimates for the current week
 - These estimates can be included in the model

$$y_{w+k} = \gamma z_w + \alpha_1 \tilde{y}_{w-1} + \alpha_2 \tilde{y}_{w-2} + \alpha_3 \tilde{y}_{w-3}$$

TWITTER FLU DETECTION

- We used our state-of-the-art Twitter system
 - Lamb et al (2013) and Broniatowski et al (2013)
- Two streams downloading data since Nov 2011
 - 1% sample and stream filtered for health keywords
 - About 4 million per day
- Cascade of tweet classifiers:
 - Relevant to health
 - Relevant to flu
 - Indicates flu infection (vs general awareness)
- Can produce daily or weekly prevalence estimates
 # of tweets classified as flu infection

of tweets from full sample

RESULTS

• Mean absolute error when nowcasting:

Data	Average error per season		
	2011-12	2012-13	2013-14
ILINet	.19	.30	.35
Twitter	.34	.36	.49
ILINet+Twitter	.15	.21	.21

RESULTS

• Mean absolute error when forecasting:

k	ILI Only	ILI+Twitter
0	$.28\pm.07$	$.19\pm.03$
1	$.41\pm.14$	$.29\pm.06$
2	$.51\pm.20$	$.37\pm.09$
3	$.62\pm.26$	$.47\pm.12$
4	$.75\pm.32$	$.56\pm.15$
5	$.88\pm.39$	$.65\pm.19$
6	$.98\pm.45$	$.75\pm.23$
7	$1.05\pm.50$	$.83\pm.28$
8	$1.12\pm.54$	$.89\pm.32$
9	$1.18\pm.57$	$.93\pm.34$
10	$1.19\pm.55$	$.91\pm.36$

RESULTS

An important caveat about historical data...

- Weekly ILINet values are subject to future revisions
- We were careful to train the models on the data that would have been available at the time of the prediction
 - But we evaluated on the gold standard value from the final report for the season

An important caveat about historical data...

- The value initially reported has an average absolute difference from the final value of **.18**
- The value reported after 3 weeks still has an average difference of **.10**

Data	Average error per season		
	2011-12	2012-13	2013-14
ILINet (current)	.19	.30	.35
ILINet (final)	.11	.24	.26

 Error is greatly underestimated when using the final gold values instead of values available at time of forecast

COMPARISON TO GOOGLE

• We also compared to Google Flu Trends

Data	Average error per season		
	2011-12	2012-13	2013-14
ILINet	.19	.30	.35
ILINet+Twitter	.15	.21	.21
ILINet+Google	.20	.44	.28

• Twitter improved nowcasting and forecasting more than Google

CONCLUSION #1

- Twitter improves influenza forecasting
 - For a given level of accuracy, including Twitter can give you 2-4 weeks of additional forecasting ability
- Twitter outperforms Google
 - At least in these three seasons
 - Google recently updated their model so comparison is difficult

CONCLUSION #2

- When using historical data, be careful to use data that actually would have been available at the time of model training
- Others have assumed these were the same
 - Our results showed that this has a substantial effect on performance

CONCLUSION #3

- Always compare to a simple time series baseline
- Our results showed that Twitter by itself is worse than using lagged ILINet data
 - No one had compared to this (using Twitter)
 - But we then showed that you can do even better by combining both!

THANK YOU

