WHAT AFFECTS PATIENT (DIS)SATISFACTION? ANALYZING ONLINE DOCTOR RATINGS WITH A JOINT TOPIC-SENTIMENT MODEL

Michael Paul, Johns Hopkins University Byron Wallace, Brown University Mark Dredze, Johns Hopkins University

Online Doctor Reviews

- Online reviews of doctors are increasingly widespread and widely used
 - An estimated 80% of doctors have reviews written about them
 - About 20% of Internet users have looked up doctor reviews in the past year
- Can also give us insights into what patients look for and care about in a health provider
- Analyzing these reviews at a large scale requires some automation

Our Approach: Topic Models

- Provides coarse overview of large text collection
 - Can highlight the main themes that appear in doctor reviews
- Previous work used LDA
 - Brody and Elhadad (2010)
- This work: Factorial LDA
 - Paul and Dredze (2012)
 - Model both topic and sentiment together, jointly
- Will explain in a few minutes

Data Source: RateMDs.com

- Online site for doctor reviews
- We collected **52,226** reviews from the United States
- Each review includes 1–5 rating for various aspects
 - Helpfulness
 - Knowledgeability
 - Staff

Data Source: Labeled Reviews

- 846 doctor reviews hand-coded with aspect and sentiment information
 - López et al. (2012)
- Three main aspects
 - Interpersonal manner
 - Technical competence
 - Systems issues

Systems issues	
positive	negative
friendly staff, short	difficult to park,
wait times,	rude staff,
convenient location	expensive

- Aspects roughly map to the RateMDs.com ratings:
 - Interpersonal manner : Helpfulness
 - Technical competence: Knowledgeability
 - Systems issues : Staff

Topic Modeling

- Probabilistic model of text generation
 - e.g. Latent Dirichlet Allocation (Blei et al, 03)
- Each document has a distribution over topics
- Each topic has a distribution over words
- Each word token is associated with a latent topic variable

performance enhancing drugs.

Topic Modeling

Jury Finds Baseball Star **npr** Roger Clemens Not Guilty On All Counts

A jury found baseball star Roger Clemens not guilty on six charges against. Clemens was accused of lying to Congress in 2008 about his use of performance enhancing drugs.

- Multi-dimensional topic model
 - Paul and Dredze (2012)
- Word tokens are associated with a vector of latent variables instead of a single topic variable
 - Can jointly model pairs of concepts like topic and sentiment
- Instead of a distribution over topics, each document has distribution over *pairs*
- Each pair is associated with its own word distribution

- We use f-LDA to model topic and sentiment
- Each (topic,sentiment) pair has a word distribution
- e.g. (Systems/Staff, Negative):

- We use f-LDA to model topic and sentiment
- Each (topic,sentiment) pair has a word distribution
- e.g. (Systems/Staff, Positive):

- We use f-LDA to model topic and sentiment
- Each (topic,sentiment) pair has a word distribution
- e.g. (Interpersonal, Positive):

- Why should the word distributions for pairs make any sense?
- Parameters are tied across the priors of each word distribution
 - The prior for (Systems, Negative) shares parameters with (Systems, Positive) which shares parameters with the prior for (Interpersonal, Positive)

Systems

staff time office questions wait helpful nice feel great appointment nurse

Positive

recommend wonderful highly knowledgeable professional kind great dr best helpful amazing

Each dimension has a weight vector over the vocabulary

Systems Positive

dr time staff great helpful feel questions office really friendly doctor

multinomial parameters sampled from Dirichlet

time staff great helpful feel doctor questions office friendly really

dr

- Where did the weight vectors come from?
- Parameter optimization
 - We learn from the data
- Overall algorithm
 - E-step: Gibbs sampling of variable assignments (same as LDA)
 - M-step: Gradient ascent on weight vectors
- We would probably not what we care about with zero supervision
 - Semi-supervised approach using informed priors

Semi-Supervision

- We incorporate prior knowledge into the model from two sources
- Prior knowledge from labeled data
 - Based on the Lopez dataset
 - Influence the word distributions
- Prior knowledge from user ratings
 - Based on the 1–5 scores in the RateMDs dataset
 - Influence the (topic,sentiment) distributions

Prior Knowledge from Labeled Data

- Learn a similar but simpler log-linear model on the labeled data
 - Details in paper; similar to Paul and Dredze (2013)
- The weights learned by training the log-linear model serve as a Gaussian prior over the weights in our f-LDA model

Prior Knowledge from Labeled Data

- Learn a similar but simpler log-linear model on the labeled data
 - Details in paper; similar to Paul and Dredze (2013)
- The weights learned by training the log-linear model serve as a Gaussian prior over the weights in our f-LDA model

Prior Knowledge from Labeled Data

- Learn a similar but simpler log-linear model on the labeled data
 - Details in paper; similar to Paul and Dredze (2013)
- The weights learned by training the log-linear model serve as a Gaussian prior over the weights in our f-LDA model

Prior Knowledge from User Ratings

- We incorporated the 1–5 ratings into the Dirichlet prior over the (topic,sentiment) pair distribution
- Defined as:

$$\exp\left(\alpha_{t_{1}}^{(B)} + \alpha_{t_{1}}^{(\mathcal{D}, \text{top.})} + \alpha_{t_{1}}^{(d, \text{top.})} + \alpha_{t_{2}}^{(\mathcal{D}, \text{sen.})} + \alpha_{t_{2}}^{(d, \text{sen.})} + \rho r_{\vec{t}}^{(d)}\right)$$
Prior in standard f-LDA New
Details in paper

- *r* is user rating variable given as input in the dataset
- ρ is scaling parameter automatically optimized for likelihood

Experiments

- Task: predict the user ratings from the (topic, sentiment) distributions
 - Measures how predictive the model is
- Method: ordinal regression
 - f-LDA distributions only
 - f-LDA distributions + bag of words
- Compared against f-LDA variants without the two modifications with prior knowledge

Experiments

• Mean absolute error; distributions only:

Experiments

• Mean absolute error; distributions + bag of words:

What's Next?

- Goal: validate model on existing data
- Next steps: use model to discover new correlations in topic/sentiment and health statistics
- Interested in geographic analysis, comparing US states
 - Early result: (topic, sentiment) distributions predict hospital post-discharge event rates better than user ratings alone
 - Right: darker states have higher proportion of the Systems topic

Questions?

Our data sets are freely available

- http://www.cebm.brown.edu/static/dr-sentiment.zip
- Thanks to Andrea Lopez and Urmimala Sarkar for sharing their labeled data