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Abstract

This paper presents the Topic-Aspect Model (TAM), a
Bayesian mixture model which jointly discovers topics
and aspects. We broadly define an aspect of a document
as a characteristic that spans the document, such as an
underlying theme or perspective. Unlike previous mod-
els which cluster words by topic or aspect, our model
can generate token assignments in both of these dimen-
sions, rather than assuming words come from only one
of two orthogonal models. We present two applications
of the model. First, we model a corpus of computational
linguistics abstracts, and find that the scientific topics
identified in the data tend to include both a computa-
tional aspect and a linguistic aspect. For example, the
computational aspect of GRAMMAR emphasizes pars-
ing, whereas the linguistic aspect focuses on formal lan-
guages. Secondly, we show that the model can capture
different viewpoints on a variety of topics in a corpus
of editorials about the Israeli-Palestinian conflict. We
show both qualitative and quantitative improvements in
TAM over two other state-of-the-art topic models.

Probabilistic topic models such as LDA (Blei, Ng, and
Jordan 2003) have emerged in recent years as a popular ap-
proach to uncovering hidden structures in text collections,
and offer a powerful way to represent the content of docu-
ments. These models, however, typically learn distributions
over words along only a single dimension of topicality, and
ignore the fact that words may fall along other dimensions
such as sentiment, perspective, or theme.

Some work has been done to simultaneously model both
topics and other types of groupings. For example, in the
topic and perspective model (Lin, Xing, and Hauptmann
2008), each word is modeled as having some weight of top-
icality and perspective (e.g., liberal or conservative), how-
ever, this model assumes that all documents are about the
same topic. The topic-sentiment mixture model (Mei et al.
2007) models each document as both a mixture of topics
and a mixture of different sentiments (i.e. negative/positive),
however, words come from either the topic model or the sen-
timent model rather than a combination of both.

In these approaches, there is no inter-dependency of top-
ics and perspectives, and they cannot capture how these per-
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spectives appear in different topics. Recently we have pre-
sented a new model, cross-collection latent Dirichlet alloca-
tion (ccLDA) (Paul and Girju 2009a), which can both dis-
cover topics among multiple text collections as well as dif-
ferences between them, and we used this to capture the per-
spectives of different cultures in blogs. Each topic is associ-
ated with a probability distribution over words that is shared
across all collections, as well as a distribution that is unique
to each collection. For example, the topic of FOOD found in
documents from different countries might contain the words
food and eat among all collections, but curry would be more
likely to appear in the India collection.

In many settings, however, it is more realistic to assume
that a document is a mixture of such aspects, rather than be-
longing to exactly one aspect. For example, a recipe for
curry pizza would contain elements from both Indian and
American food, rather than strictly one or the other. In this
paper we introduce a novel topic model, TAM, which not
only allows documents to contain multiple aspects, but it
can learn these aspects automatically. Unlike ccLDA, the
model can be applied to a single collection and can discover
patterns without document labels.

A common application of topic models is topic discovery
in scientific literature (Griffiths and Steyvers 2004), which
is useful for browsing large collections of literature. Topic
models can also be used to assign research papers to review-
ers (Mimno and McCallum 2007). In computational linguis-
tics, (Hall, Jurafsky, and Manning 2008) and (Paul and Girju
2009b) model topics in this field and study their history.

These studies, however, have ignored the multi-faceted
and interdisciplinary nature of many scientific topics. The
only work in this direction we are aware of is our recent
work (Paul and Girju 2009b) where we model scientific lit-
erature from multiple disciplines such as computational lin-
guistics and linguistics. However, in that approach the fields
are modeled independently, whereas TAM incorporates this
directly into the model. In this paper we show how TAM can
be used for the discovery of multi-faceted scientific topics.

Additionally, we model a corpus of editorials on the
Israeli-Palestinian conflict. We improve upon studies of this
corpus (Lin et al. 2006; Lin, Xing, and Hauptmann 2008)
by modeling how different perspectives on this issue affect
multiple topics within the data.



The Model
In this section we first review the principles of unsupervised
topic models such as PLSI and LDA. We then introduce our
Topic-Aspect Model (TAM).

Unsupervised Topic Modeling
Probabilistic latent semantic indexing (PLSI) (Hofmann
1999) is a probabilistic model where each word w is associ-
ated with a hidden variable z that represents the topic that the
word belongs to. Topic models such as PLSI are elegant and
flexible approaches to clustering large collections of unan-
notated data. Each topic is associated with a probability
distribution over words that captures meaningful word co-
occurrences. However, one of the main criticisms of PLSI
is that each document is represented as a variable d and it is
not clear how to label previously unseen documents. With
PLSI the number of parameters increases with corpus size,
which leads to severe overfitting. This issue is addressed by
(Blei, Ng, and Jordan 2003) with latent Dirichlet allocation
(LDA), a Bayesian model which is similar to PLSI, but the
distributions over topics and words have Dirichlet priors.

In LDA, a document is generated by first choosing a prob-
ability distribution over topics according to the probability
given by Dirichlet(α). The Dirichlet parameter α is a vector
which represents the average of the respective distributions.
In many applications, it is sufficient to assume that such vec-
tors are uniform and to fix them at a value pre-defined by the
user, and these values act as smoothing coefficients.

Topic-Aspect Model (TAM)
Like other probabilistic topic models, TAM decomposes
each document into some mix of topics that are character-
ized by a multinomial distribution over words. Words within
each topic are typically related in some way. New to TAM
over other topic models, however, is a second mixture com-
ponent that can affect the nature of a document’s content.
We broadly define an aspect of a document as a characteris-
tic that spans the document such as an underlying theme or
perspective. The model expects that each aspect affects all
topics in a similar manner.

For example, a computational linguistics paper may have
both a computational aspect and a linguistic aspect. For
instance, the computational aspect of the SPEECH RECOG-
NITION topic might focus on Markov models and error de-
tection, while the linguistic aspect might focus on prosody.
Other computational linguistics topics would likewise have
words that are characteristic of each aspect.

Similar to ccLDA (Paul and Girju 2009a), we use a binary
switching variable x to determine if the word comes from
the aspect-neutral word distribution or aspect-dependent dis-
tribution. For example, the SPEECH RECOGNITION topic
would have the word speech in its aspect-neutral distribu-
tion, but words like markov and pitch would respectively be
more probable in the computational and linguistic aspect-
dependent distributions.

Unlike ccLDA, however, TAM also includes an additional
mixture component to distinguish common words and func-

tion words from topical words1. The top level ` = 0 includes
common “background” words that appear independently of
a document’s topical content. For example, a common word
like using would likely belong to the background level, as
it is not particularly topical. In the lower level ` = 1, each
word is associated with a topic.

Thus, each token i in the corpus is associated with five
variables: a word wi, a topic zi, an aspect yi, a level `i, and
a route xi. The wordwi is observable; the values of the other
variables may be unknown. According to our model, a word
in a document is generated as follows: One first chooses a
topic and an aspect, then decides if the word should be a
background word or a topical word (corresponding to level
`=0 or `=1, respectively), then decides if the word should
depend on the aspect or not (corresponding to route x=1 or
x=0, respectively). Finally, a word is chosen according to
some probability depending on these four factors – thus, a
word may depend on a topic, an aspect, both, or neither.

If the word is to come from the background model,
the word is sampled from P (word|` = 0, x = 0) or
P (word|` = 0, x = 1, aspect) depending on if the aspect-
independent or -dependent model is used. If the word is to
be topical, it is sampled from P (word|` = 1, x = 0, topic)
or P (word|` = 1, x = 1, aspect, topic). The topic, aspect,
and level ` are chosen independently. The probability of
choosing a route x, however, depends on the level and topic.
This is because we expect that this may differ between the
background and topical levels, and we cannot expect that all
topics have the same degree of aspectuality.

Similar to LDA and ccLDA, the prior probability of the
distributions in our model are defined by Dirichlet and Beta
(the bivariate analog of Dirichlet) distributions. The model
takes as input the number of topics and aspects.
Formally, the generative process for a corpus D is:
(1) Draw a multinomial word distribution φ0 from Dirichlet(ω) for
the background, φ0y for each aspect, φ1z for each topic, and φ1yz

for each aspect and each topic
(2) Draw a binomial route distribution ψ0 from Beta(γ0, γ1) for the
background and ψ1z for each topic
(3) For each document d ∈ D:

(a) Choose a document length N
(b) Draw a multinomial topic mixture θ from Dirichlet(α)
(c) Draw a multinomial aspect mixture π from Dirichlet(β)
(d) Draw a binomial level mixture σ from Beta(δ0, δ1)
(e) For each token 0 ≤ i < N in the document:

i. Sample a topic zi from θ
ii. Sample an aspect yi from π
iii. Sample a level `i from σ
iv. Sample a route xi from ψ0 if ` = 0 or ψ1z if ` = 1
v. Sample a word wi from φ0 if ` = 0 and x = 0,
φ0y if ` = 0 and x = 1, φ1z if ` = 1 and x = 0,
or φ1yz if ` = 1 and x = 1

1A background model for common words is also used in
the topic-sentiment model (Mei et al. 2007). This technique
of modeling words at different levels of granularity is utilized
in (Chemudugunta, Smyth, and Steyvers 2006) and (Haghighi
and Vanderwende 2009). Our model differs from previous ap-
proaches in that there are multiple distributions (aspect-neutral and
-dependent) even in the background level.



Figure 1: The graphical representation of TAM.

Note that words at either level ` can depend on the aspect,
but only words at the topical level can depend on the topic.
Since most documents will share many of the same back-
ground words regardless of their topical content, allowing
the background words to be aspect-dependent gives some
consistency to the aspectual word distributions. This helps
enforce that all topics are affected by aspects in a similar
fashion. If this were not the case, then the aspect-dependent
distributions for each topic might form independently of the
other topics, and the aspects would not show consistency.

Inference and Parameter Estimation
Exact inference of the posterior distribution of the hidden
variables is intractable. We will instead approximate this
using Gibbs sampling, a Markov chain Monte Carlo algo-
rithm. In a Gibbs sampler, new values for zi, yi, `i, and xi
are iteratively sampled for each token i from the posterior
probability conditioned on the previous state of the model
(i.e., the current values for all other tokens) (Andrieu et al.
2003). This sampling equation is given in Figure 2.

The Dirichlet/Beta hyperparameters α, β, δ, γ and ω can
be interpreted as “pseudo-counts” that are added to the ob-
served counts. In the update equation, the values of these are
assumed to be known. In many applications, it may be suf-
ficient to leave these as pre-defined constants (Griffiths and
Steyvers 2004). In some cases, it is important to obtain the
optimal value for these parameters, in which case they can
be estimated during the sampling procedure (Minka 2003).
In our experiments, we find that we can achieve good per-
formance by setting these parameters by hand and adjusting
them until the results look reasonable.

Experimental Results
Experimental Setup
The field of computational linguistics is inherently inter-
disciplinary, with both computer science and linguistics as-
pects. In our first setup, we model computational linguistics
abstracts with two aspects and hope to capture these two per-
spectives.

We collect our data from the openly available ACL An-
thology2. We collected abstracts from the proceedings of
the three most prominent conferences – ACL, COLING, and
HLT – that were published after 1980 (the CL-only dataset).
The distribution of data is shown in Table 1. The abstract

2http://www.aclweb.org/anthology-new/
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Figure 2: The Gibbs sampling equation for new variable assign-
ments. The notation na

b refers to the number of times b has been
assigned to a, with ∗ being a wildcard. The counts exclude the cur-
rent assignments of the token i. W is the size of the vocabulary.
Note that the counts in the rightmost two terms are dependent on
other variables.

Field Venue # Documents Years
LING Language 1031 78-08
LING Linguistics, Journal of 152 97-08
LING Linguistic Inquiry 338 98-08
LING Ling. & Philosophy 652 77-08
CL ACL 1,826 79-08
CL COLING 1,549 80-08
CL HLT 872 86-05

Table 1: The number of documents per field and publication
venue. CL is Computational Linguistics; LING - Linguistics.

of each document can usually be extracted simply by grab-
bing the text in between the section headings “abstract” and
“introduction.” In other cases, we simply take the first 200
words of the document. We then remove common stop
words and words with a frequency of less than 10. All punc-
tuation is treated as a word separator.

We model this dataset with Z = 25 topics and Y = 2
aspects using ω = 0.01, α = 0.1, β = 1.0, γ0 = γ1 = 10.0
and δ0 = δ1 = 10.0. We run the Gibbs sampler for 5000
iterations.

In our second setup, we also include a set of abstracts
from linguistics journals (the CL-LING dataset). We as-
sume that the ACL abstracts are more likely to belong to
one aspect, while the linguistics abstracts are more likely to
belong to the other. Thus, we guide the model using semi-
supervision by defining a prior probability for P (y) based
on which collection the document comes from. We do this
by setting β = 9.0 for the aspect corresponding to the doc-
ument collection and β = 1.0 otherwise. The other parame-
ters are kept the same.

Finally, we consider a corpus of 594 editorials written by
Israeli and Palestinian authors on the Israeli-Palestinian con-
flict3 (the I-P dataset). This dataset is fully described in (Lin
et al. 2006). It includes metadata that gives the perspective
of each document, so we experiment with this dataset in both
an unsupervised and semi-supervised (with a prior based on
the document label) setting, using the same parameters as
the first two setups, with Z = 12 topics.

3http://www.bitterlemons.org



Background
Neutral

paper
based

approach
information

present
language

new
using
model

analysis
different
problem

set
describes
context
work

Background
Aspect A

results
method
corpus
using
data
task

performance
learning

text
evaluation
methods

automatic
features

experiments
accuracy
algorithm

Topical
Aspect A Neutral Aspect B

TOPIC 1
similarity semantic ontology
patterns relations conceptual

clustering lexical verbs
words relation verb

classification relationships concepts
distributional nouns hierarchy
occurrence categories objects

TOPIC 2
segmentation discourse temporal

text relations expressions
segment events tense
segments event theory

local structure aspect
coherence descriptions referring
cohesion time spatial

Background
Aspect B

natural
language

processing
structure

representation
semantic
linguistic

text
knowledge
framework

general
generation

form
computational
implemented

theory

Table 2: A sample of computational linguistics topics discovered in the CL-Only corpus with Z = 25 topics.

Topic and Aspect Discovery
Computational Linguistics Domain Modeling the CL-
Only corpus produces results we might hope for. One aspect
leans toward linguistic theory and natural language process-
ing applications, with words like language, semantic, and
grammatical near the top of the aspect-specific background-
level distribution. The other aspect leans toward mathemat-
ical and computational problems and approaches, with top
words like automatic, algorithm, and statistical.

Table 2 shows a sample of these topics as well as the top
words in the background-level distributions. As an example,
within the LEXICAL SEMANTICS topic, the computational
aspect focuses on distributional lexical semantics and word
clustering, while the linguistic aspect focuses more gener-
ally on dictionaries and ontologies. Another example (not
shown) is the topic of GRAMMAR with focus on parsing
(computational) and formal languages (linguistic).

Linguistics + Computational Linguistics Domains
TAM indeed discovers many topics that accurately represent
both collections. For example, the topic of COMMUNICA-
TION contains words like interaction and communication
in its aspect-neutral distribution. The CL aspect focuses on
dialogue systems, with words like dialogue and user. The
LING aspect focuses more generally on communication,
with words like communicative, conversation, and social. In
SEMANTICS, the LING aspect includes ideas less prevalent
in the CL documents such as pragmatics and metaphor as
well as formal semantics, while the CL aspect focuses on
semantic representation, inference, and textual entailment.

Editorial Perspective Unsupervised modeling of the
Israeli-Palestinian (I-P) data produces aspects that appear to
correspond to the two perspectives of the conflict, and our
quantitative results in the evaluation section seem to confirm
this intuition.

It is harder to interpret the results than with the compu-
tational linguistics data, but looking at the aspect-dependent
background distributions reveals some differences in the lan-

guage used, such as settlement vs occupation. One aspect’s
distribution contains more words that might be used by Is-
raelis such as jewish and the other has words more often
used by Palestinians such as palestine and the Arabic word
intifada. The aspects induced with the semi-supervised
method are more clear, with israel near the top of one as-
pect’s distribution and palestinians near the top of the other.

palestinian israeli israel
military civilians attacks
Aspect A Aspect B

war violence
public palestinians

government occupation
media resistance
society intifada
terrorist violent
soldiers non

incitement force

state israel solution palestine
palestinian states borders
Israeli Palestinian
jewish palestinians
arab return

israeli right
jews refugees

population problem
jordan refugee
west rights
south resolution

Table 3: Two topics in the I-P corpus discovered with unsuper-
vised (left) and semi-supervised (right) methods. Aspect A and B
seem to represent the Israeli and Palestinian perspectives.

Model Evaluation
Topic models are typically evaluated by measuring the like-
lihood of held-out data given a trained model (Wallach et al.
2009). However, it has been observed that such a likelihood
measurement might not correlate with the quality of topics
as interpreted by humans (Chang et al. 2009), which is im-
portant in our research. Thus, we instead evaluate TAM with
human judgments of cluster coherence. We also demonstrate
the representational power of aspects by applying TAM to a
prediction task.

Cluster Coherence For the application of scientific topic
discovery, it is important that the induced topics are seman-
tically meaningful to humans and that the word clusters are



reasonably coherent. TAM was not designed to produce
more coherent topics than other models, but rather different
kinds of topics, and so it is not necessarily our goal to show
that TAM exceeds other models in this regard. Instead, we
simply want to show that the structure of TAM does not de-
grade the quality of topics, and we want to measure if TAM
is at least as good as established topic models whose cluster
quality has already been demonstrated.

To measure the cluster coherence, we follow the word in-
trusion methodology of (Chang et al. 2009). The idea is to
give human annotators a set of words from one topic, and a
randomly chosen “intruder” word from another topic. An-
notators are asked to choose which word is the intruder –
if the topic is coherent, then it should be easy to spot the
out-of-place word. If the topic is not strongly coherent, then
annotators are likely to guess and choose incorrectly.

We first evaluate TAM on the CL-LING dataset and com-
pare against ccLDA (same experimental setup as above). We
also evaluate TAM on the CL-Only dataset. Since ccLDA
cannot be used on this single-collection dataset, we compare
against LDA (25 topics and α = 1.0, β = 0.01).

For TAM and ccLDA, we take the word with the highest
probability in the aspect-neutral distribution as well as each
aspect-specific distribution, for a total of 3 words in each
topic. For LDA, we simply take the top 3 words for each
topic. For each annotator, a word is randomly sampled from
the top 10 words of a randomly chosen topic that is different
from the topic being evaluated. It total, 4 words for each
topic are shown to annotators in a random order. There are
thus 100 different model/topic combinations (2 datasets with
2 models, each with 25 topics). These 100 topics are given
to each annotator in a random order. The five annotators are
computational linguistics graduate students and faculty.

For each topic, we define its score as the number of anno-
tators that agreed with the model. Figure 3 shows the distri-
bution of scores. It seems that TAM scores a little bit better
than ccLDA – although it has 2 more topics on which no an-
notators were correct, it has 4 more topics with strong anno-
tator agreement. On the CL-Only dataset, the interpretability
of TAM seems to be better than LDA – TAM produced no
topics on which all annotators were wrong, whereas LDA
produced 3. One might have expected LDA to have better
cluster coherence as it does not impose constraints on the
topics (i.e. that each topic must fit across both aspects), but
it seems that this is not the case.

Figure 3: The annotator word intrusion scores on the CL-LING
dataset (left) and CL-Only dataset (right).

Document Classification We would also like to quantita-
tively evaluate TAM’s clustering abilities to see if the two
aspects learned by TAM in the above experiments are mean-
ingful. One way to do this is to use the unsupervised output
of TAM as input to a supervised classifier – for example, if
a classifier can learn to correctly label the aspect/perspective
of a document using only the document’s probability of
membership to each aspect as input, then we can say that
there is a strong correspondence between the aspects learned
by TAM and the actual document aspects.

Specifically, we build binary classifiers to predict if an I-P
document was written from the Israeli or Palestinian per-
spective. We train an SVM4 using the learned real-valued
topic and aspect probabilities as features.

We perform this on the I-P corpus5 with 2 aspects and 12
topics, as done in the experiments above, using the unsuper-
vised variant of TAM. The corpora are modeled without any
reference to the document labels. As a comparison, we also
test the standard LDA model with 12 topics (α=1.0). We
also test LDA using only 2 topics to see if these topics are
similar to the 2 aspects learned by TAM.

We experimented with five different feature spaces.
LDA2 refers to the two-dimensional feature space using the
documents’ topic distributions learned by LDA with 2 top-
ics; LDA12 refers to the same but with 12 topics. TAM2
refers to the documents’ aspect distributions learned by
TAM; TAM12 refers to the topic distributions learned by
TAM; TAM2/12 refers to the concatenation of these two dis-
tributions (14 features in total).

For various values of K, we train each classifier using
1
K of the corpus and test its accuracy on the remaining
(K − 1)/K documents. Our reported accuracies are com-
puted usingK-fold cross-validation; that is, we perform this
procedure for K such partitionings and take the average ac-
curacy. As a baseline, we simply predict a document’s label
as whichever class was more likely in the training data. Re-
sults are shown in Table 4. Each column shows the accuracy
after training on different amounts of data.

We might expect that running LDA with two topics would
produce topics that represent the two perspectives, however,
TAM2 outperforms LDA2 by nearly 20%, so it is clearly not
the case that the two topics induced by LDA are the same as
TAM’s two aspects. The fairly high classification accuracy
using the simple two-dimensional feature space of TAM2,
which is nearly as good as using both aspects and topics,
demonstrates that the aspects learned by TAM have a strong
correlation with the perspectives of the documents, despite
the fact that they were modeled without supervision.

TAM12 performs about as poorly as LDA2, which shows
that the topics learned by TAM are not by themselves a good
determiner of the perspective. This makes sense, since the
topics learned by TAM are modeled as belonging to both
aspects, and thus it is less likely that the average topic distri-
butions will greatly differ between the two perspectives.

4We used the SVM light kit with the default C parameter and
a linear kernel. (Available at http://svmlight.joachims.org)

5We focus on the I-P corpus because the CL-LING data is ex-
tremely easy to classify regardless of the method used.



Model / p 0.5% 1% 5% 10% 20% 80%
LDA2 50.23 53.31 58.84 62.39 64.14 64.23
LDA12 50.81 59.40 80.94 83.88 86.41 87.38
TAM2 57.24 70.30 84.19 84.77 85.02 85.27

TAM12 50.83 52.84 56.45 60.66 64.31 66.16
TAM2/12 54.44 67.15 84.85 86.25 86.95 87.54

Table 4: The average accuracy (%) of document classification
in feature spaces learned by two topic models. Each classifier is
trained on p% of the corpus and tested in the remaining (1− p)%.

We find that there is not a huge difference between
LDA12 and TAM2/12 with large amounts of training data,
however, there is a very large improvement in TAM over
LDA when there is less training data. This suggests that as-
pects provide a more robust generalization of the data than
topics. (On the other hand, if we were classifying docu-
ments by topic, then topics would likely be a more useful
feature than aspects.) In fact, the aspect-only representa-
tion of TAM2 actually outperforms TAM2/12 with small
amounts of training data, suggesting that it is hard to es-
tablish patterns of topicality from a small number of docu-
ments, whereas the aspects show a consistent pattern.

Discussion
The structure of the Topic-Aspect Model is very malleable
and can be easily altered to suit the needs of a particular
application. For example, the background/topical level bi-
nomial could be shared across the entire corpus rather than
being drawn per-document. Conversely, the binomial distri-
bution over x could be made to be generated per-document.
The dependencies of x on z and/or ` could be dropped if a
more rigid model is desired, or for more flexibility x could
also depend on the aspect y.

We believe there are a number of applications in which
TAM could potentially be used. LDA-style topic models
have been shown to be very useful for document summa-
rization (Haghighi and Vanderwende 2009), and TAM could
be used similarly, for example to extract sentences to sum-
marize the same information from different perspectives.
TAM’s outputs could be used to enrich the features used
in certain systems. For example, if we wanted to train a
system to extract the computational approaches used for a
problem in a scientific paper, the aspect(s) assigned to a se-
quence of words might be useful features for distinguishing
the method/approach from the problem. TAM could also be
used for modeling sentiment and dialectical differences.

We must reconsider the notion of a “topic” and what it
is that topic models uncover. When applied to text, topic
models most often group words by what people would con-
sider topicality, but this is clearly not the only such group-
ing. Furthermore, words may have a position in all of these
dimensions, as has been shown in this research – instead of
being associated with only a topic z or an aspect y, a word
may be associated with a (topic, aspect) pair (z, y). There
are interesting research possibilties in this direction of multi-
dimensional latent spaces.
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